Starlink is the Only Communications Link for Some Ukrainian Towns, but the Terminals Could Also be a Target

A team of engineers from the University of Glasgow and the Ukraine have created an engine that could cut costs by "eating itself". Credit: Ken Kremer/kenkremer.com

Russia’s invasion of Ukraine has led to an outpouring of support and material aid from the international community. For his part, Elon Musk obliged Ukrainian Vice Prime Minister Mykhailo Fedorov‘s request for assistance by sending free Starlink terminals to Ukraine. For some besieged communities, like the city of Mariupol, this service constitutes the only means of getting up-to-date information, communicating with family members, or sharing their stories from the front lines of the war.

Mykhailo Fedorov, Ukraine’s Vice Prime Minister and its Minister of Digital Transformation, thanked Musk on Twitter for the devices. However, there is also the possibility that as the fighting continues, Starlink transmissions could become beacons for Russian airstrikes. John Scott-Railton, a senior researcher with The Citizen Lab (University of Toronto), pointed out this potential danger via Twitter and even recommended strategies for how this can be avoided.

Continue reading “Starlink is the Only Communications Link for Some Ukrainian Towns, but the Terminals Could Also be a Target”

A Solution to Space Junk: Satellites Made of Mushrooms?

Credit: Christian Scheckhuber/Wikipeia Commons (left); UC3M (right)

According to the latest numbers from the ESA’s Space Debris Office (SDO), there are roughly 6,900 artificial satellites in orbit. The situation is going to become exponentially crowded in the coming years, thanks to the many telecommunications, internet, and small satellites that are expected to be launched. This creates all kinds of worries for collision risks and space debris, not to mention environmental concerns.

For this reason, engineers, designers, and satellite manufacturers are looking for ways to redesign their satellites. Enter Max Justice, a cybersecurity expert, former Marine, and “Cyber Farmer” who spent many years working in the space industry. Currently, he is working towards a new type of satellite that is made out of mycelium fibers. This tough, heat-resistant, and environmentally friendly material could trigger a revolution in the booming satellite industry.

Continue reading “A Solution to Space Junk: Satellites Made of Mushrooms?”

One of the Terms of Service For Starlink is that You “Recognize Mars as a Free Planet”

Artist's illustration of a SpaceX Starship lands on Mars. Credit: SpaceX

In May of 2019, SpaceX began launching its Starlink constellation with the launch of its first 60 satellites. To date, the company has launched over 800 satellites and (as of this summer) is producing them at a rate of about 120 a month. By late 2021 or 2022, Elon Musk hopes to have a constellation of 1,440 satellites providing near-global service and perhaps as many as 42,000 providing internet to the entire planet before the decade is out.

As of November 2020, SpaceX has invited participants to take part in a public beta test called “Better Than Nothing.” The service, aptly named, is providing users with a modest rate of between 50 to 150 megabits per second, a far cry from the gigabit download speeds at low latency they hope to offer. But perhaps more interesting is the small item in the terms of service, where participants must acknowledge that Mars is a “free planet.”

Continue reading “One of the Terms of Service For Starlink is that You “Recognize Mars as a Free Planet””

About 3% of Starlinks Have Failed So Far

Starlink
An artist's conception of Starlink in orbit. Credit: SpaceX

SpaceX has drawn plenty of praise and criticism with the creation of Starlink, a constellation that will one-day provide broadband internet access to the entire world. To date, the company has launched over 800 satellites and (as of this summer) is producing them at a rate of about 120 a month. There are even plans to have a constellation of 42,000 satellites in orbit before the decade is out.

However, there have been some problems along the way as well. Aside from the usual concerns about light pollution and Radio Frequency Interference (RFI), there is also the rate of failure these satellites have experienced. Specifically, about 3% of its satellites have proven to be unresponsive and are no longer maneuvering in orbit – which could prove hazardous to other satellites and spacecraft in orbit.

Continue reading “About 3% of Starlinks Have Failed So Far”

SpaceX is Thinking of Spinning Off Starlink and Taking it Public

Credit: SpaceX

In May of 2019, SpaceX launched the first batch of satellites that will make up its Starlink constellation, thus delivering on Musk’s promise to provide broadband internet access to the whole world. Since then, the company has conducted several launches of upgraded satellites with the intent of creating a constellation of 1,584 by 2024 and 2,200 by 2027.

According to the latest statements made by Gwynne Shotwell, SpaceX’s President and Chief Operations Officer (COO), the company is considering spinning off Starlink and making it a publicly-traded company in the coming years. The announcement was made on Thursday, Feb. 6th, at a private investor event hosted by JPMorgan Chase & Co. in Miami.

Continue reading “SpaceX is Thinking of Spinning Off Starlink and Taking it Public”

Move Over SpaceX. Amazon Wants To Launch Thousands of Internet Satellites Too

NASA has released new composite images of the Earth at night, the first ones since 2012. NASA Earth Observatory images by Joshua Stevens, using Suomi NPP VIIRS data from Miguel Román, NASA's Goddard Space Flight Center
NASA has released new composite images of the Earth at night, the first ones since 2012. NASA Earth Observatory images by Joshua Stevens, using Suomi NPP VIIRS data from Miguel Román, NASA's Goddard Space Flight Center

Back in April 2019 Amazon signaled its intention to get into the internet satellite business. Following in the footsteps of SpaceX and their Starlink satellite system, Amazon intends to launch thousands of internet satellites in the coming years. Now that they’ve filed their application with the FCC, we have more details of their plan.

Continue reading “Move Over SpaceX. Amazon Wants To Launch Thousands of Internet Satellites Too”

SpaceX has Lost Contact With 3 of its Starlink Satellites

Starlink satellites prepare for deployment. Credit: SpaceX.

Back in May 23rd, 2019, SpaceX launched the first batch of its Starlink constellation, a fleet of satellites that will fulfill Elon Musk’s promise to provide broadband satellite-internet access to the entire planet. The deployment of these sixty satellites was the first in a series of six planned launches that would see around 720 satellites orbiting at an operational altitude of 550 km (340 mi).

Over the course of the past month, SpaceX announced that all sixty of the satellites were responsive, but recently indicated that contact had been lost with three of them. According to a statement issued by a company spokesperson on June 28th, these three satellites pose no danger as they will deorbit “passively” and burn up in the atmosphere.

Continue reading “SpaceX has Lost Contact With 3 of its Starlink Satellites”

SpaceX’s Starlink Constellation Construction Begins. 2,200 Satellites Will go up Over the Next 5 years

A SpaceX Falcon 9 rocket launching two of the company’s test Starlink satellites in February. Credit: SpaceX

Elon Musk has made a lot of crazy promises and proposals over the years, which inevitably leads people to pester him about deadlines. Whether it’s reusable rockets, affordable electric cars, missions to Mars, intercontinental flights, or anything having to do with his many other ventures, the question inevitably is “when can we expect it?”

That question has certainly come up in relation to his promise to launch a constellation of broadband satellites that would help provide high-speed internet access to the entire world. In response, Musk recently announced that SpaceX will launch the first batch of Starlink satellites in May 2019, and will continue with launches for the next five years.

Continue reading “SpaceX’s Starlink Constellation Construction Begins. 2,200 Satellites Will go up Over the Next 5 years”

Awesome Atlas Ferocious Fury Delivers Next Gen High Speed EchoStar 19 Internet Sat to Orbit for America

Fiery blastoff of a United Launch Alliance (ULA) Atlas V rocket carrying the EchoStar XIX satellite from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fl., at 2:13 p.m. EST on Dec. 18, 2016. Credit: Ken Kremer/kenkremer.com

Fiery blastoff of a United Launch Alliance (ULA) Atlas V rocket carrying the EchoStar XIX satellite from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fl., at 2:13 p.m. EST on Dec. 18, 2016. Credit: Ken Kremer/kenkremer.com
Fiery blastoff of a United Launch Alliance (ULA) Atlas V rocket carrying the EchoStar XIX satellite from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fl., at 2:13 p.m. EST on Dec. 18, 2016. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – The mighty Atlas V rocket put on an awesome display of ferocious fury Sunday afternoon delivering a rousing display of rocketeering capability that propelled a new next generation high speed internet satellite to orbit for North America to the delight of spectators gathered around the Florida Space Coast.

The 15,000 pound satellite will also delight American home and business subscribers users of HughesNet® – who should soon see dramatic improvements in speed and capability promised by satellite builder Space Systems Loral (SSL).

With the fiery blastoff of a United Launch Alliance (ULA) Atlas V rocket, EchoStar XIX – the world’s highest capacity broadband satellite – roared to space off Space Launch Complex-41 on Cape Canaveral Air Force Station, Fl., at 2:13 p.m. EST on Sunday, Dec. 18, 2016.

“EchoStar XIX will dramatically increase capacity for HughesNet® high-speed satellite Internet service to homes and businesses in North America,” according to ULA.

“EchoStar XIX will be the world’s highest capacity broadband satellite in orbit.”

Also known as Jupiter 2, it will deliver more speed, more data and more advanced features to consumers and small businesses from coast to coast, says EchoStar.

Liftoff on the sunny Florida afternoon was delayed some 45 minutes to deal with a technical anomaly that cropped up during the final moments of the countdown with launch originally slated for 1:27 p.m. EST.

Incoming bad weather threatened to delay the blastoff but held off until dark clouds and rains showers hit the Cape about half an hour after the eventual launch at 2:13 p.m.

EchoStar 19 is based on the powerful SSL 1300 platform as a multi-spot beam Ka-band satellite.

It is upgraded from the prior series version.

“Building from their experience on the highly successful EchoStar XVII broadband satellite, SSL and Hughes collaboratively engineered the specific design details of this payload for optimum performance.”

EchoStar 19 was delivered to a geosynchronous transfer orbit (GTO). It will be stationed at 97.1 degrees West longitude.

Fiery blastoff of a United Launch Alliance (ULA) Atlas V rocket carrying the EchoStar XIX satellite from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fl., at 2:13 p.m. EST on Dec. 18, 2016. Credit: Ken Kremer/kenkremer.com
Fiery blastoff of a United Launch Alliance (ULA) Atlas V rocket carrying the EchoStar XIX satellite from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fl., at 2:13 p.m. EST on Dec. 18, 2016. Credit: Ken Kremer/kenkremer.com

EchoStar 19 was ULA’s final mission of 2016, ending another year of 100% success rates stretching back to the company’s founding back in 2006, as a joint venture of Boeing and Lockheed Martin.

This is ULA’s 12th and last launch in 2016 and the 115th successful launch since December 2006.

United Launch Alliance (ULA) Atlas V rocket streak to orbit carrying EchoStar XIX satellite after lift off from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fl., at 2:13 p.m. EST on Dec. 18, 2016. Credit: Ken Kremer/kenkremer.com
United Launch Alliance (ULA) Atlas V rocket streaks to orbit carrying EchoStar XIX satellite after lift off from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fl., at 2:13 p.m. EST on Dec. 18, 2016. Credit: Ken Kremer/kenkremer.com

“ULA is honored to have been entrusted with the launch of the EchoStar XIX satellite,” said Gary Wentz, ULA vice president of Human and Commercial Systems, in a statement.

“We truly believe that our success is only made possible by the phenomenal teamwork of our employees, customers and industry partners.”

Ignition and liftoff of United Launch Alliance (ULA) Atlas V rocket delivering EchoStar 19 satellite to orbit from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fl., at 2:13 p.m. EST on Dec. 18, 2016. Credit: Ken Kremer/kenkremer.com
Ignition and liftoff of United Launch Alliance (ULA) Atlas V rocket delivering EchoStar 19 satellite to orbit from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fl., at 2:13 p.m. EST on Dec. 18, 2016. Credit: Ken Kremer/kenkremer.com

The 194-foot-tall commercial Atlas V booster launched in the 431 rocket configuration with approximately 2 million pounds of first stage thrust. This is the 3rd launch of the 431 configuration – all delivered commercial communications satellites to orbit.

Three solid rocket motors are attached to the Atlas booster to augment the first stage powered by the dual nozzle RD AMROSS RD-180 engine.

The satellite is housed inside a 4-meter diameter extra extended payload fairing (XEPF). The Centaur upper stage was powered by the Aerojet Rocketdyne RL10C engine.

“As we celebrate 10 years, ULA continues to be the nation’s premier launch provider because of our unmatched reliability and mission success,” Wentz elaborated.

“The Atlas V continues to provide the optimum performance to precisely deliver a range of missions. As we move into our second decade, we will maintain our ongoing focus on mission success, one launch at a time even as we transform the space industry, making space more accessible, affordable and commercialized.”

Artwork for ULA Atlas V launch of EchoStar 19 high speed Internet satellite on Dec. 18, 2016 from  Canaveral Air Force Station, Florida.  Credit: ULA
Artwork for ULA Atlas V launch of EchoStar 19 high speed Internet satellite on Dec. 18, 2016 from Canaveral Air Force Station, Florida. Credit: ULA

December has been an extremely busy time for launches at the Cape, with three in the past week and a half supported by U.S. Air Force’s 45th Space Wing. These include NASA’s CYGNSS hurricane mission launch by an Orbital ATK Pegasus rocket on Dec. 15; and the WGS-8 military communications satellite launch for the US Air Force by a ULA Delta 4 rocket on Dec. 7.

“Congratulations to ULA and the entire integrated team who ensured the success of our last launch capping off what has been a very busy year,” said Col. Walt Jackim, 45th Space Wing vice commander and mission Launch Decision Authority.

“This mission once again clearly demonstrates the successful collaboration we have with our mission partners as we continue to shape the future of America’s space operations and showcase why the 45th Space Wing is the ‘World’s Premiere Gateway to Space.'”

A ULA Atlas V rocket carrying the EchoStar 19 high speed internet satellite is poised for blastoff from  Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on Dec. 18, 2016. Credit: Ken Kremer/kenkremer.com
A ULA Atlas V rocket carrying the EchoStar 19 high speed internet satellite is poised for blastoff from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on Dec. 18, 2016. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

ULA Atlas V rocket carrying the EchoStar 19 high speed internet satellite is poised for blastoff from  Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on Dec. 18, 2016. Credit: Ken Kremer/kenkremer.com
ULA Atlas V rocket carrying the EchoStar 19 high speed internet satellite is poised for blastoff from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on Dec. 18, 2016. Credit: Ken Kremer/kenkremer.com

Iridium NEXT Set to Begin Deployment This Year

An artist's conception of an Iridium-NEXT satellite in low Earth orbit. Credit: Iridium Communications Inc.

The skies, they are uh changin’…  I remember reading in Astronomy magazine waaaay back in the late 1990s (in those days, news was disseminated in actual paper magazines) about a hot new constellation of satellites that were said to flare in a predictable fashion.

This is the Iridium satellite constellation, a series of 66 active satellites and six in-orbit and nine ground spares. The ‘Iridium’ name comes from the element with atomic number 77 of the same name (the original project envisioned 77 satellites in low Earth orbit), and the satellites serve users with global satellite phone coverage.

A 'double Iridium flare' capture! Image credit: Mary Spicer
A ‘double Iridium flare’ capture! Image credit: Mary Spicer

Over the years, Iridium satellite flares have become a common sight in the night sky… but that may change soon.

The next generation of Iridium communications satellites begins launching later this year through 2017.

Known as Iridium-NEXT, the first launch is set for October of this year from Dombarovsky air base Russia atop a converted ICBM Dnepr rocket. The Dnepr can carry two satellites on each launch, and SpaceX has also recently agreed to deploy 70 satellites over the span of seven missions launching from Vandenberg Air Force Base in California later this year.

Both the initial Iridium satellites and Iridium NEXT are operated by Iridium Communications Incorporated. The original satellites were built by Motorola and Lockheed Martin, and the prime contract for Iridium NEXT construction went to Thales Alenia Space.

There are also several fascinating issues surrounding the history of the Iridium constellation, both past and present.

Originally fielded by Motorola in the 1990s, satellite phones were to be “the next big thing” until mobile phones took over. Conceived in the late 1980s, the concept of satellite phones was practically obsolete before the first Iridium satellite got off the ground. The high cost of satellite phone services assured they could never manage to compete with the explosive growth of the mobile phone industry, and satellite phones at best only found niche applications for remote operations worldwide.  Iridium Communications declared bankruptcy in 1999, and the $6 billion US dollar project was bought by a group of private investors for only $35 million dollars.

Airmen using an Iridium satellite phone in Antarctica. Image credit: Robert Tingle/USAF
Airmen using an Iridium satellite phone in Antarctica. Image credit: Robert Tingle/USAF

The original Iridium constellation employed a unique system of Inter-Satellite Links, enabling them to directly route signals from satellite to satellite. Iridium NEXT will use an innovative L-band phased array antenna, allowing for larger bandwidth and faster data transmission. The Iridium NEXT constellation is planned to eventually contain 81 satellites including spares, and the system will be much more robust and reliable.

The Iridium NEXT constellation will also face some stiff competition, as Google, SpaceX and OneWeb are also looking to get into the business of satellite Internet and communications. This will also place hundreds of new satellites—not to mention the growing flock of CubeSats—into an already very crowded region of low Earth orbit. The Iridium 33 satellite collision with the defunct Kosmos 2251 satellite in 2009 highlighted the ongoing issues surrounding space debris.

The company applied for a plan to deorbit the original Iridium constellation starting in 2017 as soon as the new Iridium NEXT satellites are in place.

Now, I know what the question of the hour is, as it’s one that we get frequently from other satellite spotters and lovers of artificial things that flash in the sky:

Will the Iridium NEXT satellites flare in manner similar to their predecessors?

Unfortunately, the prospects aren’t good. Missing on Iridium NEXT are the three large refrigerator-sized antennae which are the source of those brilliant -8 magnitude flares. And sure, while these flares weren’t Iridium’s sole mission purpose, they were sure fun to watch!

An 'Iridium classic...' note the trio of reflective antenae on the lower bus. Image credit: Iridium Communications inc.
An ‘Iridium classic…’ note the trio of reflective antennae on the lower bus. Image credit: Iridium Communications inc.

David Cubbage, Associate Director of NEXT Spacecraft Development and Satellite Production recently told Universe Today:

“It was very exciting when we first discovered that the Iridium Block 1 satellite vehicles (SVs) reflected the sunlight into a concentrated “flare” that could be viewed in the night sky.  The unique design of the Block 1 SV, with three highly reflective Main Mission Antennas (MMA) deployed at an angle from the SV body, is what caused that to happen.  For the Iridium NEXT constellation, the SVs will be built under a different design with a single MMA that faces the Earth — a design that requires fewer parts that do not need to be as reflective.  As a result, it will not likely produce the spectacular flares of the Block 1 design.”

But don’t despair. Though the two decade ‘Age of the Iridium flare’ may be coming to an end, lots of other satellites, including the Hubble Space Telescope, MetOp-A and B,  and the COSMO-SkyMed series of satellites can ‘slow flare’ on occasion. We recently saw something similar during a pass of the U.S. Air Force’s super-secret ATV-4 space plane currently carrying out its OTV-4 mission, suggesting that a large reflective solar panel may be currently deployed.

An Iridium flare through the constellations Orion and Lepus. Image credit: David Dickinson
An Iridium flare passing through the constellations Orion and Lepus. Image credit: David Dickinson

And though the path to commercial viability for satellite internet and communications is a tough one, we hope it does indeed take off soon… we personally love the idea of being able to stay connected from anywhere worldwide.

Be sure to catch those Iridium flares while you can… we’ll soon be telling future generations of amateur astronomers that we remember “back when…”

-Check out the chances for the next Iridium flare coming to a sky near you on Heavens-Above.