Astronauts Could Dust off Themselves and Equipment on the Moon With an Electron Beam

Buzz Aldrin's bootprint on the surface of the moon during the Apollo 11 mission on July 20, 1969. Credit: NASA

In the coming years, NASA will be sending astronauts to the Moon for the first time since the Apollo Era. This time, and as part of the Artemis Program, NASA also plans to build the necessary infrastructure to establish a sustained human presence on the Moon and eventually missions to Mars – including the Artemis Base Camp and the orbiting Lunar Gateway.

They’ll be getting some new equipment, such as the exploration Extravehicular Mobility Unity (xEMU) spacesuit and a fancy new lunar lander. Of course, as the Artemis astronauts will also have to deal with the same hazards as their predecessors – not the least of which is lunar dust (or regolith). Luckily, NASA is investigating a possible solution in the form of a handheld electron/ultraviolet (UV) device that could mitigate this hazard.

Continue reading “Astronauts Could Dust off Themselves and Equipment on the Moon With an Electron Beam”

SLS Will be Tested Again in About 3 Weeks

The core stage for the first flight of NASA’s Space Launch System rocket is seen in the B-2 Test Stand during a scheduled eight minute duration hot fire test, Saturday, Jan. 16, 2021, at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. Credits: NASA/Robert Markowitz

In November of 2021, NASA will embark on a new era of space exploration as they make the inaugural launch of the Space Launch System (SLS). When it enters service, this booster will be the most powerful rocket since the Saturn V, which took the Apollo astronauts to the Moon. This is fitting since the SLS will be the rocket returning astronauts to the Moon by 2024 (as part of Project Artemis).

To get the SLS ready for its first launch, NASA has been running the Core Stage through a series of tests designed to test all the systems and components of the heavy-launch system – collectively known as a “Green Run.” The next step in this process will be a second Green Run Hot Fire Test, where all four RS-25 engines on the SLS Core Stage will fire at once to show they can operate as part of a single integrated system.

Continue reading “SLS Will be Tested Again in About 3 Weeks”

SLS Hot Fire Test Should Have Lasted 8 Minutes, Not 1

Credit: NASA/SSC

Today, at close to 04:30 PM local time (CST), NASA achieved a major milestone with the development of the Space Launch System (SLS) – the heavy launch system they will use to send astronauts back to the Moon and crewed missions to Mars. As part of a Green Run Hot Fire Test, all four RS-25 engines on the SLS Core Stage were fired at once as part of the first top-to-bottom integrated test of the stage’s systems.

This test is the last hurdle in an eight-step validation process before the Core Stage can be mated with its Solid Rocket Boosters (SRBs) and sent on its maiden voyage around the Moon (Artemis I) – which is currently scheduled to happen sometime in November of 2021.

Continue reading “SLS Hot Fire Test Should Have Lasted 8 Minutes, Not 1”

NASA Announces its Artemis Astronauts: 18 People Training to Fly to the Moon

Credit: NASA

In less than four years, NASA will be sending the “first woman and next man” to the Moon as part of the Artemis III mission. This will be the first time that astronauts have landed on the lunar surface since the final mission of the Apollo Program, which was Apollo 17 in 1972. After careful consideration, NASA has announced the names of the 18 astronauts that make up the Artemis Team.

Continue reading “NASA Announces its Artemis Astronauts: 18 People Training to Fly to the Moon”

Here are NASA’s Science Priorities for the Artemis Missions

View of the Earth rising above the lunar horizon, taken during the Apollo 11 mission. Credit: NASA

In October of 2024, NASA will send astronauts to the Moon for the first time since the Apollo Era. After establishing orbit with their Orion spacecraft, a team of two astronauts (“the first woman and the next man”) will land in the Moon’s southern polar region. Over the course of a week, these astronauts will explore and investigate one of the region’s many permanently-shadowed craters.

As the first crewed lunar mission in over fifty years, this mission and those that follow will have a robust series of science objectives. These objectives were laid out in the Artemis III Science Definition Team Report, which was released to the public earlier this month. This report is a summary of the science plan prepared at the behest of NASA’s Science Mission Directorate (SMD) for the Artemis III mission.

Continue reading “Here are NASA’s Science Priorities for the Artemis Missions”

The Moon has Resources, but Not Enough to Go Around

A geological map of the Moon showing different formations and mineral deposits. Credit: NASA/GSFC/USGS

It’s no secret that in this decade, NASA and other space agencies will be taking us back to the Moon (to stay, this time!) The key to this plan is developing the necessary infrastructure to support a sustainable program of crewed exploration and research. The commercial space sector also hopes to create lunar tourism and lunar mining, extracting and selling some of the Moon’s vast resources on the open market.

Ah, but there’s a snag! According to an international team of scientists led by the Harvard & Smithsonian Center for Astrophysics (CfA), there may not be enough resources on the Moon to go around. Without some clear international policies and agreements in place to determine who can claim what and where, the Moon could quickly become overcrowded, overburdened, and stripped of its resources.

Continue reading “The Moon has Resources, but Not Enough to Go Around”

A 100-Meter Rotating Liquid Mirror Telescope on the Moon? Yes Please.

New results from the NASA/ESA Hubble Space Telescope suggest the formation of the first stars and galaxies in the early Universe took place sooner than previously thought. A European team of astronomers have found no evidence of the first generation of stars, known as Population III stars, when the Universe was less than one billion years old. This artist’s impression presents the early Universe. Image Credit: ESA/Hubble, M. Kornmesser.

In the coming years, some truly awesome next-generation telescopes are going to be gathering their first light. Between space telescopes like James Webb and Nancy Grace Roman, and ground-based telescopes like the Extremely Large Telescope (ELT) and the Giant Magellan Telescope (GMT), astronomers will be able to study aspects of the Universe that were previously inaccessible.

For instance, there are Population III stars, which are the first stars to have formed in the Universe. These stars are not observable in visible light and even next-generation facilities (like those mentioned above) will not be able to see them. But according to a team led by NASA Hubble Fellow Anna Schauer, the solution could be to build what she has named the “Ultimately Large Telescope” (ULT) on the Moon.

Continue reading “A 100-Meter Rotating Liquid Mirror Telescope on the Moon? Yes Please.”

Lunar Dust is Still One of The Biggest Challenges Facing Moon Exploration

Apollo 17 astronaut Harrison Schmitt collecting a soil sample, his spacesuit coated with dust. Credit: NASA

In the coming years, astronauts will be returning to the Moon for the first time since the closing of the Apollo Era. Beyond that, NASA and other space agencies plan to establish the necessary infrastructure to maintain a human presence there. This will include the Artemis Gateway in orbit (formerly the Lunar Gateway) and bases on the surface, like NASA’s Artemis Base Camp and the ESA’s International Moon Village.

This presents a number of challenges. The Moon is an airless body, it experiences extreme variations in temperature, and its surface is exposed to far more radiation than we experience here on Earth. On top of that, there’s the lunar dust (aka. regolith), a fine powder that sticks to everything. To address this particular problem, a team of ESA-led researchers is developing materials that will provide better protection for lunar explorers.

Continue reading “Lunar Dust is Still One of The Biggest Challenges Facing Moon Exploration”

NASA is Looking for Ideas on How to Jump-Start a Lunar Economy!

Credit: NTL/HeroX

In less than four years, NASA intends to send the first woman and the next man to the Moon as part of Project Artemis. This will be the first crewed mission to the lunar surface since Apollo 17, the last mission of the Apollo Program, in 1972. It’s also the culmination of decades of planning, research, development, and robotic missions that helped pave the way. And all along NASA has been clear what their overall goal is:

“We’re going back to the Moon! And this time, we’re going to stay!”

In addition to sending astronauts back to the lunar surface by 2024, NASA also plans to establish infrastructure by the end of the decade that will allow for a “sustainable lunar exploration” program. To achieve this, NASA and HeroX have launched the NASA Lunar Delivery Challenge, which will award $25,000 in prizes to teams who can design systems capable of handling payloads that will be delivered to the lunar surface.

Continue reading “NASA is Looking for Ideas on How to Jump-Start a Lunar Economy!”

NASA Announces the Discovery of Water in the Sunlit Parts of the Moon

Credit: NASA

For decades, astronomers have speculated that there may be water on the Moon. In recent years, this speculation was confirmed one orbiting satellite after another detected water ice around the Moon’s southern polar region. Within this part of the lunar surface, known as the South-Pole Aitken Basin, water ice is able to persist because of the many permanently-shadowed craters that are located there.

But until now, scientists were operating under the assumption that lunar water was only to be found in permanently shadowed craters. But thanks to NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA), water has been observed on the sunlit side of the Moon for the first time. This discovery indicates that water may be distributed all across the lunar surface, and not limited to the dark corners.

Continue reading “NASA Announces the Discovery of Water in the Sunlit Parts of the Moon”