Russian Space Freighter Hauling Fresh Fruit Blasts Off for ISS Crew

“Fresh fruit is on the way! Here are some of the best pics taken from @Space_Station during today’s (March 31, 2016) #Progress launch.” Credit: NASA/Jeff Williams
“Fresh fruit is on the way! Here are some of the best pics taken from @Space_Station during today’s (March 31, 2016) #Progress launch.” Credit: NASA/Jeff Williams
“Fresh fruit is on the way! Here are some of the best pics taken from @Space_Station during today’s (March 31, 2016) #Progress launch.” Credit: NASA/Jeff Williams

An unmanned Russian space freighter hauling fresh fruit and over three tons of food, water, supplies and science experiments blasted off today, Thursday, March 31, from the Baikonur Cosmodrome in Kazakhstan, commencing a two-day orbital trek to the six person crew living aboard the International Space Station (ISS).

The successful nighttime liftoff of the Progress 63 cargo ship atop a three stage Soyuz 2.1a booster took place at 12:23 p.m. EDT (10:23 p.m. local time in Baikonur) from Site 31 at Baikonur as the orbiting outpost was flying about 251 miles (400 km) above northeast Iraq.

The Russian Progress 63 spacecraft launches on a Soyuz booster on a two-day trip to the International Space Station. Credit: Roscosmos
The Russian Progress 63 spacecraft launches on a Soyuz booster on a two-day trip to the International Space Station. Credit: Roscosmos

NASA astronaut and Expedition 47 crew member Jeff Williams captured several elegant views of the Progress launch from his heavenly perch on the station inside the Cupola.

“Fresh fruit is on the way! Here are some of the best pics taken from @Space_Station during today’s #Progress launch,” Williams said on his social media accounts from space.

“Today’s #Progress launch occurred about 5 minutes before we passed over the launch site in Baikonur.”

“Sunset occurred for us about a minute later and shortly after we caught site of the rocket ahead and below us from the Cupola. We continued to catch up to it until it was directly below. We saw the flash of 3rd stage ignition and the subsequent 3rd stage was spectacular. Here are some of the best shots taken from the International Space Station. (note the one taken just after the moment of engine cutoff!) Spectacular!” Williams elaborated.

The Russian Progress 63 spacecraft launch on a Soyuz booster to the International Space Station on March 31, 2016, as photographed by NASA astronaut and Expedition 47 crew member Jeff Williams from onboard the orbiting outpost.  Credit: NASA/Jeff Williams
The Russian Progress 63 spacecraft launch on a Soyuz booster to the International Space Station on March 31, 2016, as photographed by NASA astronaut and Expedition 47 crew member Jeff Williams from onboard the orbiting outpost. Credit: NASA/Jeff Williams

The Progress 63 resupply ship, also known by its Russian acronym as Progress MS-02, is due to arrive at the station on April 2 for an automated docking to the aft port of the Russian Zvezda Service Module.

After a picture perfect eight and a half minute climb to its initial orbit, the Progress MS-02 separated from the Soyuz third stage and deployed its pair of solar arrays and navigational antennas as planned.

“This was a flawless ascent to orbit for the Progress 63 cargo craft carrying just over three tons of supplies,” said NASA launch commentator Rob Navius during a live launch webcast on NASA TV. “Everything was right on the money.”

“All stages of the Soyuz booster performed to perfection.”

The planned longer two-day and 34 orbit journey rather than a faster 3 or 4 orbit rendezvous and docking is designed to help engineers test out new computer software and vehicle communications gear on this new version of the Progress.

“The two-day rendezvous for the Progress is deliberately planned to enable Russian flight controllers to test new software and communications equipment for the new vehicle configuration that will be standard for future Progress and piloted Soyuz spacecraft,” according to NASA officials.

Gantry towers surround the Progress 63 rocket at its launch pad at the Baikonur Cosmodrome in Kazakhstan. Credit: RSC Energia
Gantry towers surround the Progress 63 rocket at its launch pad at the Baikonur Cosmodrome in Kazakhstan. Credit: RSC Energia

Docking to the orbiting laboratory is set for approximately 2 p.m. Saturday, April 2.

NASA TV will provide live docking coverage of the Progress 63 arrival starting at 1:15 p.m. on Saturday.

Today’s Progress launch counts as the second of a constellation of three resupply ships from the US and Russia launching to the station over a three successive weeks.

The Orbital ATK ‘SS Rick Husband’ Cygnus resupply spacecraft that launched last week on Tuesday, March 22, 2016 was at the vanguard of the cargo ship trio – as I reported here from on site at the Kennedy Space Center in Florida.

A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

Cygnus was successfully berthed at the Earth-facing port of the Unity module this past Saturday, March 26 – as I reported here.

Following Progress is the SpaceX Return To Flight (RTF) mission dubbed SpaceX CRS-8.

It is slated to launch on April 8 and arrive at the ISS on April 10 for berthing to the Earth-facing port of the Harmony module – at the end of the station where NASA space shuttles formerly docked. It carries another 3.5 tons of supplies.

So altogether the trio of international cargo ships will supply over 12 tons of station supplies in rapid succession over the next 3 weeks.

This choreography will set up America’s Cygnus and Dragon resupply craft to simultaneously be present and reside attached at adjacent ports on the ISS for the first time in history.

Plans currently call for Cygnus to stay at station for approximately two months until May 20th., when it will be unbolted and unberthed for eventual deorbiting and reentry.

Progress 63 will remain at the station for six months.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about Orion, SLS, ISS, NASA Mars rovers, Orbital ATK, ULA, SpaceX, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:

Apr 9/10: “NASA and the Road to Mars Human Spaceflight programs” and “Curiosity explores Mars” at NEAF (NorthEast Astronomy and Space Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club – http://rocklandastronomy.com/neaf.html

Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/

Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html

Weekly Space Hangout – June 5, 2015: Stephen Fowler, Creative Director at InfoAge

Host: Fraser Cain (@fcain)
Special Guest: This week we welcome Stephen Fowler, who is the Creative Director at InfoAge, the organization behind refurbishing the TIROS 1 dish and the Science History Learning Center and Museum at Camp Evans, Wall, NJ.

Guests:
Jolene Creighton (@jolene723 / fromquarkstoquasars.com)
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )

Continue reading “Weekly Space Hangout – June 5, 2015: Stephen Fowler, Creative Director at InfoAge”

Weekly Space Hangout – May 8, 2015: Emily Rice & Brian Levine from Astronomy on Tap

Host: Fraser Cain (@fcain)
Special Guest: Emily Rice & Brian Levine from Astronomy on Tap

Guests:
Jolene Creighton (@jolene723 / fromquarkstoquasars.com)
Charles Black (@charlesblack / sen.com/charles-black)
Brian Koberlein (@briankoberlein)
Dave Dickinson (@astroguyz / www.astroguyz.com)
Continue reading “Weekly Space Hangout – May 8, 2015: Emily Rice & Brian Levine from Astronomy on Tap”

Weekly Space Hangout – May 1, 2015: Prof. Coel Hellier, WASP & SuperWASP

Host: Fraser Cain (@fcain)
Special Guest: Prof. Coel Hellier, Professor of Astrophysics at Keele University, UK, to talk about WASP & SuperWASP.

Guests:
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )
Alessondra Springmann (@sondy)
Continue reading “Weekly Space Hangout – May 1, 2015: Prof. Coel Hellier, WASP & SuperWASP”

Failed Space Station Computer Spurs Contingency Spacewalk Plans

A view of the International Space Station as seen by the last departing space shuttle crew, STS-135. Credit: NASA

NASA is preparing a contingency spacewalk to deal with a broken backup computer component on the International Space Station, the agency said in an update Saturday (April 12). While there’s no timeline yet for the spacewalk, the agency must consider carefully when to do it given a cargo ship is supposed to arrive at station on Wednesday.

The SpaceX Dragon spacecraft — already delayed due to an unrelated radar problem — is still scheduled to launch Monday at 4:58 p.m. EDT (8:58 p.m. UTC) to arrive at station two days later. Although the computer controls some robotic systems, NASA added the Canadarm2 that will grapple Dragon has other redundancies in place. The question is if the station itself has enough redundancy for the launch to go forward.

“A final decision on whether to launch Dragon Monday will not be made until another status meeting is conducted Sunday morning,” NASA stated.

The failure poses no risk to the crew and normal station operations are not affected, NASA emphasized. The failure was uncovered Friday “during a routine health check” of a box called EXT-2, which backs up a primary component that sits outside on the S0 truss (near the station’s center).

Expedition 39 commander Koichi Wakata performs maintenance on the Carbon Dioxide Removal Assembly on the International Space Station. Picture taken in April 2014. Credit: NASA
Expedition 39 commander Koichi Wakata performs maintenance on the Carbon Dioxide Removal Assembly on the International Space Station. Picture taken in April 2014. Credit: NASA

Earlier Saturday, a docked Progress robotic spacecraft boosted the station’s altitude in a planned maneuver to ready for the next Soyuz spacecraft launch, which will carry half of the Expedition 40 crew in May.

If spacewalks do go forward, this would be the second required contingency set required since Luca Parmitano experienced a life-threatening leak in a NASA spacesuit last July. NASA ordered an investigation, received a report in February and has halted all nonessential spacewalks while it addresses the recommendations. (Russian spacewalks in Orlan spacesuits are unaffected.)

The only NASA spacewalks that happened since summer took place in December, when an ammonia pump failure crippled science experiments on station. NASA’s Rick Mastracchio and his now returned-to-Earth crewmate Mike Hopkins performed two contingency spacewalks, successfully replacing the pump. The agency has snorkels and absorbent pads ready for its spacesuits as backup if another leak occurs.

You can read the entire NASA update here. We will keep you apprised as circumstances warrant.

The Expedition 39 crew on March 27, 2014 a few hours after the second half of the crew arrived on a Soyuz spacecraft. From left, Steve Swanson (NASA), Koichi Wakata (Japan Aerospace Exploration Agency), Alexander Skvortsov (Roscomos), Rick Mastracchio (NASA), Mikhail Tyurin (Roscomos) and Oleg Artemyev (Roscosmos). Credit: NASA (YouTube/screenshot)
The Expedition 39 crew on March 27, 2014 a few hours after the second half of the crew arrived on a Soyuz spacecraft. From left, Steve Swanson (NASA), Koichi Wakata (Japan Aerospace Exploration Agency), Alexander Skvortsov (Roscomos), Rick Mastracchio (NASA), Mikhail Tyurin (Roscomos) and Oleg Artemyev (Roscosmos). Credit: NASA (YouTube/screenshot)

Weekly Space Hangout – February 7, 2014: New Impact on Mars & A Wobbly Planet

Host: Fraser Cain
Astrojournalists: Scott Lewis, Nicole Gugliucci, Morgan Rehnberg, Brian Koberlein, Elizabeth Howell, Amy Shira Teitel, David Dickinson

This Week’s Stories!

Morgan Rehnberg (cosmicchatter.org / @cosmic_chatter):
New Mars impact crater

Nicole Gugliucci (cosmoquest.org / @noisyastronomer):
Weird Asteroid Itokawa Has a Dual Personality
Shiny new radio image of M82 (but no supernova afterglow)

David Dickinson (@astroguyz):
Venus in 2014
Progress+launches for February
Space History-Curious Artifacts Sent Into Space

Elizabeth Howell (@howellspace):
Astronomy Podcast Enters Sixth Year — And We’d Love For You To Contribute!
Super-Earths Could Be More ‘Superhabitable’ Than Planets Like Ours

Brian Koberlein (@briankoberlein); Scott Lewis (@baldastronomer); & Elizabeth Howell (@howellspace):
‘Wobbly’ Alien Planet Has Weird Seasons And Orbits Two Stars

Amy Shira Teitel (@astVintageSpace):
When galaxies collide!

Scott Lewis (@baldastronomer):
Gaia

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

Space Trucks! A Pictorial History Of These Mighty Machines

A view of Orbital Sciences' Cygnus spacecraft while it was being released from the International Space Station on Oct. 22. Credit: NASA/Karen Nyberg

Cargo resupply ships are vital for space exploration. These days they bring food, experiments and equipment to astronauts on the International Space Station. And in recent years, it hasn’t just been government agencies sending these things up; SpaceX’s Dragon spacecraft and (just this week) Orbital Sciences’ Cygnus spacecraft brought up cargo of their own to station in recent months.

NASA just published a brief timeline of (real-life) cargo spacecraft, so we thought we’d adapt that information in pictorial form. Here are some of the prominent members of that elite group. Did we miss anything? Let us know in the comments.

Dragon in orbit during the CRS-2 mission. Credit: NASA/CSA/Chris Hadfield
SpaceX’s Dragon in orbit during the CRS-2 mission. It was the first commercial spacecraft to resupply the space station, and since 2012 has completed resupply missions. Credit: NASA/CSA/Chris Hadfield
Thrust
Space shuttle Discovery heads to space after lifting off from Launch Pad 39A at NASA’s Kennedy Space Center in Florida to begin its final flight to the International Space Station on the STS-133 mission. The shuttle was NASA’s main human spacecraft between 1981 and 2011. Credit: NASA
Progress 51 on final approach to the International Space Station. The stuck antenna is visible below the crosshairs. Credit: NASA TV (screencap)
Progress 51 on final approach to the International Space Station. The Russians have been flying versions of this cargo spacecraft since 1978. Credit: NASA TV (screencap)
JAXA's H-II Transfer Vehicle during a mission in July 2012. The first demonstration flight took place in 2009. Credit: NASA
JAXA’s H-II Transfer Vehicle (HTV) during a mission in July 2012. The first demonstration flight took place in 2009. Credit: NASA

 

The ATV Johannes Kepler docked at the International Space Station. Credit: NASA
The ATV Johannes Kepler docked at the International Space Station. Versions of this spacecraft have flown since 2008. Credit: NASA
A line drawing of the TKS (Transportnyi Korabl’ Snabzheniia, or Transport Supply Spacecraft). It was intended to send crew and cargo together in one flight, but delays and a change in program priorities never allowed it to achieve that. According to NASA, versions of TKS (under the Cosmos designation) flew to the Salyut 6 and Salyut 7 space station. The cargo part of the spacecraft was also used for Russian base modules in the Mir space station and International Space Station. Credit: NASA/Wikimedia Commons
A line drawing of the TKS (Transportnyi Korabl’ Snabzheniia, or Transport Supply Spacecraft). It was intended to send crew and cargo together in one flight, but delays and a change in program priorities never allowed it to achieve that. According to NASA, versions of TKS (under the Cosmos designation) flew to the Salyut 6 and Salyut 7 space station. The cargo part of the spacecraft was also used for Russian base modules in the Mir space station and International Space Station. Credit: NASA/Wikimedia Commons

How to Spot the Antares Launch from NASA Wallops on Wednesday

Sighting prospects for the US Eastern Seaboard during the ascent of Antares. (Credit: The Orbital Sciences Corporation).

A space launch marking a new era is departing from the Virginia coast this Wednesday evening, and if you live anywhere along a wide area of the US Eastern seaboard, you’ll have a great opportunity to witness the launch with your own eyes. Here’s all the information you’ll need to see it, plus some tips for capturing it with your camera.

Orbital Sciences’ Antares rocket will launch from Pad 0A at NASA’s Mid-Atlantic Regional Spaceport based on Wallops Island, Virginia. This will mark not only the first launch of Antares, but the first orbital launch of a liquid-fueled rocket from Wallops. The launch window runs from 5:00 to 8:00 PM EDT (21:00-24:00 UT).

There were some concerns when a technical anomaly shutdown a “Wet Dress Rehearsal” test this weekend at T-16 minutes, but Orbital Sciences has stated that the problems have been resolved and the launch is pressing ahead as planned.

Space shots are a familiar sight to the residents of the Florida Space Coast, but will provide a unique show for residents of the U.S. central Atlantic region. The launch of Antares from Wallops will be visible for hundreds of miles and be over 10° above the horizon for an arc spanning from Wilmington, North Carolina to Washington D.C. and north to the New York City tri-state area as it heads off to the southeast. Antares is a two stage rocket with a 1st stage liquid fueled engine and a solid-fueled 2nd stage. The primary mission for Wednesday’s Antares A-One flight will be to demonstrate the ability for the Antares rocket to place a payload into orbit. If all goes well, Orbital Sciences will join SpaceX this summer in the select club of private companies with the ability provide cargo delivery access to the International Space Station in Low Earth Orbit.

Antares heads to orbit. Artist's concept. (Credit: Orbital Sciences Corperation).
Antares heads to orbit. Artist’s concept. (Credit: Orbital Sciences Corporation).

Antares will deploy a dummy mass simulating the Cygnus module. Also onboard are the Phonesat-1a, -1b, and -1c micro-cubesats and the Dove 1 satellite.

Be sure to watch for the launch of Antares if you live in the region. Find a spot with a low uncluttered eastern horizon and watch from an elevated rooftop or hilltop location if possible. I live a hundred miles west of Cape Canaveral and I’ve followed launches all the way through Main Engine Cutoff and first stage separation with binoculars.

Be sure to also follow the launch broadcast live for any last minute delays via NASA TV or Universe Today will have a live feed as well. Antares is aiming to put the Cygnus test mass in a 250 x 300 kilometre orbit with a 51.6° inclination. This is similar to what will be necessary to head to the ISS, but this week’s launch will not be trailing the ISS in its path. This also means that the launch window can be extended over three hours rather than having to be instantaneous.

If the launch goes at the beginning of the window, the local sun angle over the launch facility will be 30° to the west. Sunset at Wallops on the evening of April 17th occurs at 7:41PM EDT, meaning we could be in for a photogenic dusk launch of Antares if it stretches to the end of the target window.

And speaking of which, a pre-sunset launch means short daytime exposure settings for photography. Be prepared to switch over for dusk conditions if the launch extends into the end of the window. Conditions during twilight can change almost moment-to-moment. One of the most memorable launches we witnessed was the pre-dawn liftoff of STS-131 on April 5th, 2010:

The predawn launch of STS-131 as seen from 100 miles west. (Photo by author).
The predawn launch of STS-131 as seen from 100 miles west. (Photo by author).

Once in orbit, the launch of Antares should generate four visible objects; the test mass payload, the two clam-shell fairings, and the stage two booster. This configuration is similar to a Falcon 9/Dragon launch, minus the solar panel covers. These objects should be visible to the naked eye at magnitudes +3 to +5. The cubesat payloads are tiny and below the threshold of naked eye visibility.

Preliminary visibility for the objects will favor latitudes 0-30° north at dusk to 10-40° at dawn. Keep in mind these predictions could change as the launch window evolves. The next NORAD tracking ID in the queue is 2013-015A. Yesterday’s launch of Anik G1 from Baikonur was just cataloged today as 2013-014A plus associated hardware. The weather is forecast to be 45% “go” for tomorrow’s launch. In the event of a scrub, the next launch window for Antares is April 18-21st.

First orbit of the Cygnus test mass; shadow orientation of the Earth assumes a nominal launch at 22:00UT on April 17th. (Created by the author using Orbitron. TLEs courtesy of (name)
First orbit of the Cygnus test mass; shadow orientation of the Earth assumes a nominal launch at 22:00 UT on April 17th. (Created by the author using Orbitron. Two-Line Elements courtesy of Henry Hallam).

It’ll be exciting to follow this first flight of Antares and its first scheduled mission to the International Space Station this summer. Also watch for the first ever lunar mission to depart Wallops on August 12 with the launch of the Lunar Atmosphere and Dust Environment Explorer (LADEE).

Finally, if you’ve got a pass of the International Space Station this week, keep an eye out for Progress M-17M currently about 10 minutes ahead of the station in its orbit. The unmanned Progress vehicle just undocked yesterday from the station and will be conducting a series of experiments monitoring the interactions of its thrusters with the ionosphere before burning up on reentry over the South Pacific on April 21st.

A pass of the ISS over UK tonite (April 16th) with Progress leading at 20:30UT. (Created by the author in Orbitron).
A pass of the ISS over UK tonite (April 16th) with Progress leading at 20:30UT. (Created by the author in Orbitron).

The ISS and more can be tracked using Heavens-Above. Also, we’ll be tweeting all of the updates and orbital action as it evolves as @Astroguyz. Let us know of those launch sightings both near and far. It’ll be interesting to see what, if any, impact launches visible to a large portion of the U.S. population will have on the public’s perception of spaceflight. Be sure to look up tomorrow night!

Special Delivery, Low-Earth Orbit Style!

A Progress resupply vehicle seen on approach to the ISS on Jan. 27, 2012. (NASA)

[/caption]

When you’re cruising along in low-Earth orbit, running out of supplies is not an option. Fortunately there are Progress vehicles: Russian spacecraft that carry much-needed supplies and equipment to the astronauts aboard the Space Station.

The photo above, taken by Expedition 30 crew members, shows the unmanned Progress 46 vehicle approaching the ISS on January 27, 2012.

Progress 46 carried 2,050 pounds of propellant, 110 pounds oxygen and air, 926 pounds of water and 2,778 pounds of parts and experiment hardware, for a total of 2.9 tons of food, fuel and equipment for the Expedition 30 crew.

The Progress is similar in appearance and design to Soyuz spacecraft, which serve as human transportation to and from the Space Station, but differs in that the second of the spacecraft’s three sections (as prior to launch) is a refueling module, and the third uppermost section is a cargo module.

In addition to bringing supplies to the ISS, Progress vehicles also serve as – for lack of a better term – “garbage trucks”, undocking from the Station loaded with trash and re-entering the atmosphere, during which time much of the refuse inside gets incinerated.

Progress 46 successfully docked to the Space Station at 7:09 p.m. (EST) on Jan. 27, 2012.

Image: NASA

Soyuz Launches to Station amid Swirling Snowy Spectacular

Blastoff of Soyuz TMA-22 amidst swirling snowstorm at 11:14:03 p.m. Nov. 13 from Baikonur Cosmodrome, Kazakhstan. The three man crew comprised NASA astronaut Dan Burbank and Russian cosmonauts Anton Shkaplerov and Anatoly Ivanishin. Credit: NASA/Roscosmos

[/caption]

The future survival and fate of the International Space Station was on the line and is now firmly back on track following today’s (Nov. 13) successful, high stakes liftoff of a Russian Soyuz rocket carrying a three man crew of two Russians and one American bound for the orbiting research platform, amidst the backdrop of a spectacular snowstorm swirling about the Baikonur Cosmodrome in Kazakhstan – rare even by Russian standards.

The international crew comprises Expedition 29 Flight Engineer Dan Burbank from NASA – veteran of two prior shuttle missions to the station in 2000 and 2006 – and Anton Shkaplerov and Anatoly Ivanishin from Russia. It’s the rookie flight for both Russian cosmonauts.

Soyuz TMA-22 lifts off under near blizzard conditions on Nov.13. Credit: NASA/Roscosmos

This is the first flight of a manned Soyuz-FG rocket – and of humans to space – since NASA’s Space Shuttle was forcibly retired in July and the subsequent failure of a virtually identical unmanned Soyuz-U booster in August which grounded all Russian flights to the ISS and threatened to potentially leave the station with no human presence aboard.

Snowy Soyuz TMA -22 blast off on Nov.13. Credit: Roscosmos

The trio of space flyers soared to the heavens at 11:14:03 p.m. EST Sunday Nov. 13 (11:14:03 a.m. Baikonur time Monday, Nov. 14) abroad their Soyuz TMA-22 capsule which was mounted atop the 50 meter tall Soyuz rocket.

Blastoff occurred precisely on time at about the time when the frigid, snow bedecked launch pad rotated into the plane of the orbit of the ISS. The launch was carried live on NASA TV and the ship quickly disappeared from view behind the nearly blinging blizzard.

The Soyuz TMA-22 achieved orbital insertion some nine minutes later into an initial 143 by 118 mile orbit, inclined 51 degrees to the equator.

The vehicles antennae’s and solar arrays were quickly deployed per plan and all spacecraft systems were functioning perfectly according to Russian Ground Control in Moscow.

Soyuz TMA-22 launches in spectacular snowstorm on Nov. 13 with Expedition 29 Flight Engineer Dan Burbank from NASA and Anton Shkaplerov and Anatoly Ivanishin from Russia. Credit: NASA/Joe Acaba

Following a two day orbital chase and three course correction burns the future ISS residents are due to dock at the Russian Poisk module at the complex at about 12:33 a.m. EST on Wednesday, Nov. 16.

In the hours prior to launch the crew received a religious blessing from the Russian Orthodox Church, took the bus for the 25 mile trip to the Cosmodrome, donned their white Sokol launch and entry suits and headed to the pad.

The crew boarded the capsule in the midst of an extremely heavy snow storm which struck the Baikonur region of Kazakhstan in the evening prior to launch. See photo from backup NASA astronaut Joe Acaba.

Soyuz TMA-22 crew boards capsule amidst snowstorm at Baikonur. Credit: NASA/Joe Acaba

Although snow is quite common at this time of year, the blizzard conditions at launch time were actually quite rare according to NASA spokesman Rob Navias at Baikonur.

American rockets would never blast off in such severe weather conditions – but it’s nothing for the Russians!

The temperature was about 24 F, roughly 6 inches (15 cm) of snow had accumulated on the ground at launch time and moderate wind gusts partially obscured the view.

For the first time ever, a Soyuz crew was dressed in parkas – See Joe Acaba twitpic below !

Gantry towers were retracted from the three stage Soyuz booster at about T minus 25 minutes. The umbilical’s retracted in the final seconds.

The three stage Soyuz-FG rocket lifted off from Launch Pad 1 (LC-1), the same pad from which Cosmonaut Yuri Gagarin flew as the first human to space 50 Years ago this year. The pad is named “Gagarin Start” in honor of Gagarin’s courageous achievement on April 12, 1961.

The rocket was fueled with kerosene (RP-1) and cryogenic liquid oxygen.

The ISS was flying some 248 miles above the Pacific Ocean and just west of Chile at launch time.

On the way to the Pad. Snow is falling. First time crew has had to wear these overcoats/parkas. All is go so far. Twitpic and comment from NASA astronaut Joe Acaba at Baikonur

The importance of the TMA-22 mission cannot be overstated because it restored confidence in Russian rockets which now serve as the world’s only pathway for providing human access to the $100 Billion earth orbiting outpost.

The cramped Soyuz capsule measures just 2.2 m wide by 2.1 m high and weighs 2200 kg.

Today’s critical launch had been delayed be nearly two months from September 22, following the failure of a nearly identical Soyuz-U booster in August which was carrying the Progress 44 cargo resupply spacecraft and crashed ignominiously in Siberia after the third stage shut down unexpectedly.

The Progress 44 was loaded with nearly 3 tons of supplies and was bound for the ISS.

The third stage is nearly identical for both the manned and unmanned versions of the normally highly reliable Soyuz booster rocket.

The launch came only after a thorough review of the causes of the accident by a special State Commision- which was traced to a clogged fuel line – introduction of new quality control measures and careful inspection of all the engines.

“We have no doubt in our minds both the rocket and the vehicle are ready, all the activities have been done at the appropriate level of quality and reliability,” said Vladimir Popovkin, Head of Roscosmos, the Russian Federal Space Agency, prior to liftoff.

Expedition 29 Flight Engineer Satoshi Furukawa, Commander Mike Fossum and Flight Engineer Sergei Volkov watch their new crew mates launch on time from inside the Destiny laboratory. Credit: NASA TV

The new crew will join the other half of Expedition 29 already in residence aboard the ISS; Expedition 29 Commander Mike Fossum (NASA) and Flight Engineers Satoshi Furukawa (Japan) and Sergei Volkov (Russia). This will temporarily restore the ISS to a full complement of 6 crewmembers – but only for a few days.

Fossum will hand over command of the station to the new crew within four days. His crew departs the ISS for Earth reentry on Nov. 21.

The successful launch means that the ISS will not have to be left unmanned for the first time since continuous manned occupation began over 11 years ago and which would have placed the station at risk in case of failures requiring human intervention.

Burbank, Shkaplerov and Ivanishin will spend 5 months aboard the station. They will be joined in December by the next trio to round out Expedition 30

Prelaunch photo of Soyuz-TMA-22/Expedition 29 crew - NASA astronaut Dan Burbank and Russian cosmonauts Anton Shkaplerov and Anatoly Ivanishin Credit: Roscosmos

Read Ken’s continuing features about Russian Space Programs including Soyuz, Progress, Phobos-Grunt and Soyuz in South America starting here:
Soyuz Poised for High Stakes November 13 Blastoff – Space Stations Fate Hinges on Success
Success ! Launch Video of Crucial Russian Rocket to ISS puts Human Flights back on Track
Russians Race against Time to Save Ambitious Phobos-Grunt Mars Probe from Earthly Demise
Russia’s Bold Sample Return Mission to Mars and Phobos Blasts Off
Video Duet – Soyuz Debut Blast off from the Amazon Jungle and Rockin’ Russian Rollout !
Historic 1st Launch of Legendary Soyuz from South America
Russian Soyuz Poised for 1st Blastoff from Europe’s New South American Spaceport