Will Pluto finally answer, ‘Are we alone?’

Two features that could be cryovolcanoes exist on Pluto. They lay on either side of heart-shaped Sputnik Planitia in this color-enhanced image of Pluto from NASA’s New Horizons spacecraft taken in July 2015. (Credit: NASA / Johns Hopkins University Applied Physics Laboratory (JHUAPL) / Southwest Research Institute (SwRI))
Two features that could be cryovolcanoes exist on Pluto. They lay on either side of heart-shaped Sputnik Planitia in this color-enhanced image of Pluto from NASA’s New Horizons spacecraft taken in July 2015. (Credit: NASA / Johns Hopkins University Applied Physics Laboratory (JHUAPL) / Southwest Research Institute (SwRI))

We previously examined how Neptune’s largest moon, Triton, could answer the longstanding question: Are we alone? With its nitrogen geysers discovered by NASA’s Voyager 2 spacecraft, possible interior ocean, and lack of craters, Triton could be geologically active, which makes it an excellent celestial body for future astrobiology missions. But Triton isn’t the only place on the edge of the solar system which garners interest for finding life beyond Earth, as one of the most familiar and well-known (former) planets also exhibits evidence of recent geological activity and crater-less surface features. This is everyone’s favorite dwarf planet, Pluto, which like Triton has only been visited by one spacecraft, this one being NASA’s New Horizons, in 2015. But even with only one visitation, we discovered so much about Pluto, and what it might be hiding, as well.

Continue reading “Will Pluto finally answer, ‘Are we alone?’”

A Bunch of New Names for Pluto’s Surface Features Were Just Approved

14 of Pluto's surface features have new official names now. Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Ross Beyer

Pluto is getting some new names. In the past, prior to the New Horizons mission, there wasn’t much to name. But now that that spacecraft has flew past Pluto and observed it up close, there’s some features that need naming.

Now the IAU (International Astronomical Union) has approved a new set of names for 14 of the dwarf planet’s surface features.

Continue reading “A Bunch of New Names for Pluto’s Surface Features Were Just Approved”

A Farewell to Plutoshine

Credit:

Looking back at an overexposed Charon and Plutoshine. Credit: NASA/JPL/New Horizons

Sometimes, its not the eye candy aspect of the image, but what it represents. A recent image of Pluto’s large moon Charon courtesy of New Horizons depicting what could only be termed ‘Plutoshine’ caught our eye. Looking like something from the grainy era of the early Space Age, we see a crescent Charon, hanging against a starry background…

So what, you say? Sure, the historic July 14th , 2015 flyby of New Horizons past Pluto and friends delivered images with much more pop and aesthetic appeal. But look closely, and you’ll see something both alien and familiar, something that no human eye has ever witnessed, yet you can see next week.

We’re talking about the reflected ‘Plutoshine‘ on the dark limb of Charon. This over-exposed image was snapped from over 160,000 kilometers distant by New Horizons’ Ralph/Multispectral imager looking back at Charon, post flyby. For context, that’s just shy of half the distance between the Earth and the Moon. “Bigger than Texas” (Cue Armageddon), Charon is about 1200 kilometers in diameter and 1/8th the mass of Pluto. Together, both form the only true binary (dwarf) planetary pair in the solar system, with the 1/80th Earth-Moon pair coming in at a very distant second.

Earthshine on the Moon. Credit: Dave Dickinson

We see reflected sunlight coming off of a gibbous Pluto which is just out of frame, light that left the Sun 4 hours ago and took less than a second to make the final Pluto-Charon-New Horizons bounce. You can see a similar phenomenon next week, as Earthshine or Ashen Light illuminates the otherwise dark nighttime side of the Earth’s Moon, fresh off of passing New phase this weekend. Snow and cloud cover turned Moonward can have an effect on how bright Earthshine appears. One ongoing study based out of the Big Bear Solar observatory in California named Project Earthshine seeks to characterize long-term climate variations looking at this very phenomenon.

The view on the evening of January 28th looking west at dusk. Credit: Stellarium.

Standing on Pluto, you’d see a 3.5 degree wide Charon, 7 times larger than our own Full Moon. Of course, you’d need to be standing in the right hemisphere, as Pluto and Charon are tidally locked, and keep the same face turned towards each other. It would be a dim view, as the Sun shines at -20 magnitude at 30 AU distant, much brighter than a Full Moon, but still over 600 times fainter than sunny Earth. Dim Plutoshine on the nightside of Charon would, however, be easily visible to the naked eye.

A small 6 cm instrument, Ralph images in the visual to near-infrared range. Ralph compliments New Horizons larger LORRI instrument, which has a diameter and very similar optical configuration to an amateur 8-inch Schmidt-Cassegrain telescope.

Charon as seen from Pluto. Credit: Starry Night.

Don’t look for Pluto now; it just passed solar conjunction on the far side of the Sun on January 7th, 2017. Pluto reaches opposition and favorable viewing for 2017 on July 10th, one of the 101 Astronomical Events for 2017 that you’ll find in our free e-book, out from Universe Today.

And for an encore, New Horizons will visit the 45 kilometer in diameter Kuiper Belt Object 2014 MU69 on New Year’s Day 2019. From there, New Horizons will most likely chronicle the environs of the the distant solar system, as it joins Pioneer 10 and 11 and Voyagers 1 and 2 as human built artifacts cast adrift along the galactic plane.

A pretty pair: Pluto and Charon. Credit: NASA/JPL/New Horizons

And to think, it has taken New Horizons about 18 months for all of its flyby data to trickle back to the Earth. Enjoy, as it’ll be a long time before we visit Pluto and friends again.

Scientists Assemble Fresh Global Map of Pluto Comprising Sharpest Flyby Images

NASA’s New Horizons mission science team has produced this updated panchromatic (black-and-white) global map of Pluto. Credits: NASA/JHUAPL/SWRI

NASA’s New Horizons mission science team has produced this updated panchromatic (black-and-white) global map of Pluto. The map includes all resolved images of Pluto’s surface acquired at pixel resolutions ranging from 18 miles (30 kilometers) on the Charon-facing hemisphere (left and right edges of the map) to 770 feet (235 meters) on the hemisphere facing New Horizons during the closest approach on July 14, 2015 (map center).  Credits: NASA/JHUAPL/SWRI
NASA’s New Horizons mission science team has produced this updated panchromatic (black-and-white) global map of Pluto. Credits: NASA/JHUAPL/SWRI

The science team leading NASA’s New Horizons mission that unveiled the true nature of Pluto’s long hidden looks during the history making maiden close encounter last July, have published a fresh global map that offers the sharpest and most spectacular glimpse yet of the mysterious, icy world.

The newly updated global Pluto map is comprised of all the highest resolution images transmitted back to Earth thus far and provides the best perspective to date.

Click on the lead image above to enjoy Pluto revealed at its finest thus far. Click on this link to view the highest resolution version.

Prior to the our first ever flyby of the Pluto planetary system barely 8 months ago, the planet was nothing more than a fuzzy blob with very little in the way of identifiable surface features – even in the most powerful telescopic views lovingly obtained from the Hubble Space Telescope (HST).

Dead center in the new map is the mesmerizing heart shaped region informally known as Tombaugh Regio, unveiled in all its glory and dominating the diminutive world.

The panchromatic (black-and-white) global map of Pluto published by the team includes the latest images received as of less than one week ago on April 25.

The images were captured by New Horizons’ high resolution Long Range Reconnaissance Imager (LORRI).

The science team is working on assembling an updated color map.

During its closest approach at approximately 7:49 a.m. EDT (11:49 UTC) on July 14, 2015, the New Horizons spacecraft swoop to within about 12,500 kilometers (nearly 7,750 miles) of Pluto’s surface and about 17,900 miles (28,800 kilometers) from Charon, the largest moon.

The map includes all resolved images of Pluto’s surface acquired in the final week of the approach period ahead of the flyby starting on July 7, and continuing through to the day of closest approach on July 14, 2015 – and transmitted back so far.

The pixel resolutions are easily seen to vary widely across the map as you scan the global map from left to right – depending on which Plutonian hemisphere was closest to the spacecraft during the period of close flyby.
They range from the highest resolution of 770 feet (235 meters), at center, to 18 miles (30 kilometers) at the far left and right edges.

The Charon-facing hemisphere (left and right edges of the map) had a pixel resolution of 18 miles (30 kilometers).

“This non-encounter hemisphere was seen from much greater range and is, therefore, in far less detail,” noted the team.

However the hemisphere facing New Horizons during the spacecraft’s closest approach on July 14, 2015 (map center) had a far higher pixel resolution reaching to 770 feet (235 meters).

Coincidentally and fortuitously the spectacularly diverse terrain of Tombaugh Regio and the Sputnik Planum area of the hearts left ventricle with ice flows and volcanoes, mountains and river channels was in the region facing the camera and sports the highest resolution imagery.

See below a newly released shaded relief map of Sputnik Planum.

This new shaded relief view of the region surrounding the left side of Pluto’s heart-shaped feature – informally named Sputnik Planum – shows that the vast expanse of the icy surface is on average 2 miles (3 kilometers) lower than the surrounding terrain.  Angular blocks of water ice are “floating” in the bright deposits of softer, denser solid nitrogen.   Credits:  NASA/JHUAPL/SwRI
This new shaded relief view of the region surrounding the left side of Pluto’s heart-shaped feature – informally named Sputnik Planum – shows that the vast expanse of the icy surface is on average 2 miles (3 kilometers) lower than the surrounding terrain. Angular blocks of water ice are “floating” in the bright deposits of softer, denser solid nitrogen. Credits: NASA/JHUAPL/SwRI

“Sputnik Planum – shows that the vast expanse of the icy surface is on average 2 miles (3 kilometers) lower than the surrounding terrain. Angular blocks of water ice along the western edge of Sputnik Planum can be seen “floating” in the bright deposits of softer, denser solid nitrogen,” according to the team.

Even more stunning images and groundbreaking data will continue streaming back from New Horizons until early fall, across over 3 billion miles of interplanetary space.

Thus the global map of Pluto will be periodically updated.

Its taking over a year to receive the full complement of some 50 gigabits of data due to the limited bandwidth available from the transmitter on the piano-shaped probe as it hurtled past Pluto, its largest moon Charon and four smaller moons.

Pluto is the last planet in our solar system to be visited in the initial reconnaissance of planets by spacecraft from Earth since the dawn of the Space Age.

This new global mosaic view of Pluto was created from the latest high-resolution images to be downlinked from NASA’s New Horizons spacecraft and released on Sept. 11, 2015. The images were taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers). This new mosaic was stitched from over two dozen raw images captured by the LORRI imager and colorized. Annotated with informal place names. Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Marco Di Lorenzo/Ken Kremer/kenkremer.com
This new global mosaic view of Pluto was created from the latest high-resolution images to be downlinked from NASA’s New Horizons spacecraft and released on Sept. 11, 2015. The images were taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers). This new mosaic was stitched from over two dozen raw images captured by the LORRI imager and colorized. Annotated with informal place names. Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Marco Di Lorenzo/Ken Kremer/kenkremer.com

New Horizons remains on target to fly by a second Kuiper Belt Object (KBO) on Jan. 1, 2019 – tentatively named PT1, for Potential Target 1. It is much smaller than Pluto and was recently selected based on images taken by NASA’s Hubble Space Telescope.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

“X” Marks the Spot of Convective Churning on Hot Pluto

“X” marks the spot in this image transmitted to Earth on Dec. 24, 2015 from the Long Range Reconnaissance Imager (LORRI) from NASA’s New Horizons’ showing the highest-resolution swath of Pluto at the center of Sputnik Planum, the informally named plain that forms the left side of Pluto’s “heart.” The pattern of polygonal cells stems from the slow thermal convection of the nitrogen-dominated ices. Also visible is a a dirty block of water ice “floating” in denser solid nitrogen. Credits: NASA/JHUAPL/SwRI

“X” marks the spot that’s illustrative of “convective churning” resulting from subsurface planetary heating, as seen in a fascinating new super high resolution image received from NASA’s New Horizons spacecraft on Christmas Eve, Dec. 24, 2015. Its situated at the very center of the left ventricle of Pluto’s huge “heart” – an icy flow plain that’s informally named “Sputnik Planum.”

The “X” feature – see image above – is located in an area of intersecting cells, shaped like polygons, on the plains of “Sputnik Planum” which are mostly comprised of frozen nitrogen ices.

Continue reading ““X” Marks the Spot of Convective Churning on Hot Pluto”

Possible Ice Volcanoes Discovered on Pluto

Ice Volcanoes on Pluto? The informally named feature Wright Mons, located south of Sputnik Planum on Pluto, is an unusual feature that’s about 100 miles (160 kilometers) wide and 13,000 feet (4 kilometers) high. It displays a summit depression (visible in the center of the image) that's approximately 35 miles (56 kilometers) across, with a distinctive hummocky texture on its sides. The rim of the summit depression also shows concentric fracturing. New Horizons scientists believe that this mountain and another, Piccard Mons, could have been formed by the 'cryovolcanic' eruption of ices from beneath Pluto's surface. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Ice Volcanoes on Pluto?
The informally named feature Wright Mons, located south of Sputnik Planum on Pluto, is an unusual feature that’s about 100 miles (160 kilometers) wide and 13,000 feet (4 kilometers) high. It displays a summit depression (visible in the center of the image) that’s approximately 35 miles (56 kilometers) across, with a distinctive hummocky texture on its sides. The rim of the summit depression also shows concentric fracturing. New Horizons scientists believe that this mountain and another, Piccard Mons, could have been formed by the ‘cryovolcanic’ eruption of ices from beneath Pluto’s surface. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute[/caption]

The possible discovery of a pair of recently erupting ice volcanoes on Pluto are among the unexpected “astounding” findings just unveiled by perplexed scientists with NASA’s New Horizons spacecraft, barely four months after the historic first flyby of the last unexplored planet in our solar system.

“Nothing like this has been seen in the deep outer solar system,” said Jeffrey Moore, New Horizons Geology, Geophysics and Imaging team leader from NASA Ames Research Center, Moffett Field, California, as the results so far were announced at the 47th Annual Meeting of the Division for Planetary Sciences (DPS) of the American Astronomical Society (AAS) this week in National Harbor, Maryland.

“The Pluto system is baffling us,” said mission Principal Investigator Alan Stern of the Southwest Research Institute, Boulder, Colorado, at a news media briefing on Nov. 9.

Two large mountainous features tens of miles across and several miles high, have been potentially identified by the team as volcanoes.

Scientists using New Horizons images of Pluto’s surface to make 3-D topographic maps have discovered that two of Pluto’s mountains, informally named Wright Mons and Piccard Mons, could possibly be ice volcanoes. The color is shown to depict changes in elevation, with blue indicating lower terrain and brown showing higher elevation; green terrains are at intermediate heights.  Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Scientists using New Horizons images of Pluto’s surface to make 3-D topographic maps have discovered that two of Pluto’s mountains, informally named Wright Mons and Piccard Mons, could possibly be ice volcanoes. The color is shown to depict changes in elevation, with blue indicating lower terrain and brown showing higher elevation; green terrains are at intermediate heights. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

They were found in terrain located south of Sputnik Planum – a vast area of smooth icy plains located within Pluto’s huge heart shaped region informally known as Tombaugh Regio. It may have formed very recently resulting from geologic activity within the past 10 million years.

The possible ice volcanoes, or cryovolcanoes, were found at two of Pluto’s most distinctive mountains and identified from images taken by New Horizons as it became Earth’s first emissary to hurtle past the small planet on July 14, 2015.

“All of our flyby plans succeeded,” Stern stated at the briefing.

“All of the data sets are spectacular.

Scientists created 3-D topographic maps from the probes images and discovered the possible ice volcanoes – informally named Wright Mons and Piccard Mons.

Wright Mons, pictured above, is about 100 miles (160 kilometers) wide and 13,000 feet (4 kilometers) high.

Both mountains appear to show summit depressions “with a large hole” visible in the center, similar to volcanoes on Earth. Scientists speculate “they may have formed by the ‘cryovolcanic’ eruption of ices from beneath Pluto’s surface.”

The erupting Plutonian ices might be composed of a melted slurry of water ice, nitrogen, ammonia and methane.

The depression inside Wright Mons is approximately 35 miles (56 kilometers) across and exhibits a “distinctive hummocky texture on its sides. The rim of the summit depression also shows concentric fracturing.”

“These are big mountains with a large hole in their summit, and on Earth that generally means one thing—a volcano,” said Oliver White, New Horizons postdoctoral researcher with NASA Ames, in a statement.

The team is quick to caution that the “interpretation of these features as volcanoes is tentative” and requires much more analysis.

“If they are volcanic, then the summit depression would likely have formed via collapse as material is erupted from underneath. The strange hummocky texture of the mountain flanks may represent volcanic flows of some sort that have travelled down from the summit region and onto the plains beyond, but why they are hummocky, and what they are made of, we don’t yet know.”

This new global mosaic view of Pluto was created from the latest high-resolution images to be downlinked from NASA’s New Horizons spacecraft and released on Sept. 11, 2015.   The images were taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers).  This new mosaic was stitched from over two dozen raw images captured by the LORRI imager and colorized.  Right side inset from New Horizons team focuses on Tombaugh Regio heart shaped feature.  Annotated with informal place names.  Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Marco Di Lorenzo/Ken Kremer/kenkremer.com
This new global mosaic view of Pluto was created from the latest high-resolution images to be downlinked from NASA’s New Horizons spacecraft and released on Sept. 11, 2015. The images were taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers). This new mosaic was stitched from over two dozen raw images captured by the LORRI imager and colorized. Right side inset from New Horizons team focuses on Tombaugh Regio heart shaped feature. Annotated with informal place names. Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Marco Di Lorenzo/Ken Kremer/kenkremer.com

More than 50 papers about the Pluto system are being presented at the AAS meeting this week.

So far New Horizon has transmitted back only about 20 percent of the data gathered, according to mission Principal Investigator Alan Stern.

“It’s hard to imagine how rapidly our view of Pluto and its moons are evolving as new data stream in each week. As the discoveries pour in from those data, Pluto is becoming a star of the solar system,” said Stern.

“Moreover, I’d wager that for most planetary scientists, any one or two of our latest major findings on one world would be considered astounding. To have them all is simply incredible.”

Locations of more than 1,000 craters mapped on Pluto by NASA’s New Horizons mission indicate a wide range of surface ages, which likely means that Pluto has been geologically active throughout its history.  Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Locations of more than 1,000 craters mapped on Pluto by NASA’s New Horizons mission indicate a wide range of surface ages, which likely means that Pluto has been geologically active throughout its history. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

The piano shaped probe gathered about 50 gigabits of data as it hurtled past Pluto, its largest moon Charon and four smaller moons.

Stern says it will take about a year for all the data to get back. Thus bountiful new discoveries are on tap for a long time to come.

With 20 percent of the data now returned and more streaming back every day, the team is excited to debate what is all means.

“This is when the debates begin,” said Curt Niebur, New Horizons program scientist at NASA Headquarters, at the missions Nov 9 media briefing. “This is when the heated discussions begin. This is when the entire science community starts staying up throughout the night.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Just 15 minutes after its closest approach to Pluto on July 14, 2015, NASA's New Horizons spacecraft looked back toward the sun and captured this near-sunset view of the rugged, icy mountains and flat ice plains extending to Pluto's horizon - shown in this colorized rendition. The smooth expanse of the informally named icy plain Sputnik Planum (right) is flanked to the west (left) by rugged mountains up to 11,000 feet (3,500 meters) high, including the informally named Norgay Montes in the foreground and Hillary Montes on the skyline. To the right, east of Sputnik, rougher terrain is cut by apparent glaciers. The backlighting highlights more than a dozen layers of haze in Pluto’s tenuous but distended atmosphere. The image was taken from a distance of 11,000 miles (18,000 kilometers) to Pluto; the scene is 780 miles (1,250 kilometers) wide. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute. Colorized/Annotated: Marco Di Lorenzo/Ken Kremer/kenkremer.com
Just 15 minutes after its closest approach to Pluto on July 14, 2015, NASA’s New Horizons spacecraft looked back toward the sun and captured this near-sunset view of the rugged, icy mountains and flat ice plains extending to Pluto’s horizon – shown in this colorized rendition. The smooth expanse of the informally named icy plain Sputnik Planum (right) is flanked to the west (left) by rugged mountains up to 11,000 feet (3,500 meters) high, including the informally named Norgay Montes in the foreground and Hillary Montes on the skyline. To the right, east of Sputnik, rougher terrain is cut by apparent glaciers. The backlighting highlights more than a dozen layers of haze in Pluto’s tenuous but distended atmosphere. The image was taken from a distance of 11,000 miles (18,000 kilometers) to Pluto; the scene is 780 miles (1,250 kilometers) wide. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute. Colorized/Annotated: Marco Di Lorenzo/Ken Kremer/kenkremer.com

NASA’s New Horizons Makes Major Discoveries: Young Ice Mountains on Pluto and Crispy Young Chasms on Charon

New close-up images of a region near Pluto’s equator reveal a giant surprise -- a range of youthful mountains rising as high as 11,000 feet (3,500 meters) above the surface of the icy body. Credits: NASA/JHU APL/SwRI

New close-up images of a region near Pluto’s equator reveal a giant surprise — a range of youthful mountains rising as high as 11,000 feet (3,500 meters) above the surface of the icy body. Credits: NASA/JHU APL/SwRI
Story/photos expanded[/caption]

APPLIED PHYSICS LABORATORY, LAUREL, MD – Scientists leading NASA’s historic New Horizons mission to the Pluto system announced the first of what is certain to be a tidal wave of new discoveries, including the totally unexpected finding of young ice mountains at Pluto and crispy clear views of young fractures on its largest moon Charon, at a NASA media briefing today (July 15) at the Applied Physics Laboratory (APL) in Laurel, Maryland.

A treasure trove of long awaited data has begun streaming back to Mission Control at Johns Hopkins University Applied Physics Laboratory to the mouth watering delight of researchers and NASA.

With the first ever flyby of Pluto, America completed the initial up close reconnaissance of the planets in our solar system. Pluto was the last unexplored planet, building on missions that exactly started 50 years ago in 1965 when Mariner IV flew past Mars.

“Pluto New Horizons is a true mission of exploration showing us why basic scientific research is so important,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington.

“The mission has had nine years to build expectations about what we would see during closest approach to Pluto and Charon. Today, we get the first sampling of the scientific treasure collected during those critical moments, and I can tell you it dramatically surpasses those high expectations.”

Crisp new view of Pluto’s largest moon, Charon shows a swath of cliffs and troughs stretches about 600 miles (1,000 kilometers) from left to right, suggesting widespread fracturing of Charon’s crust, likely a result of internal processes. At upper right, along the moon’s curving edge, is a canyon estimated to be 4 to 6 miles (7 to 9 kilometers) deep.  Credit: NASA-JHUAPL-SwRI
Crisp new view of Pluto’s largest moon, Charon shows a swath of cliffs and troughs stretches about 600 miles (1,000 kilometers) from left to right, suggesting widespread fracturing of Charon’s crust, likely a result of internal processes. At upper right, along the moon’s curving edge, is a canyon estimated to be 4 to 6 miles (7 to 9 kilometers) deep. Credit: NASA-JHUAPL-SwRI

Today the team announced that New Horizons has already made a totally unexpected discovery showing clear evidence of ice mountains on Pluto’s surface in the bright area informally known as the ‘big heart of Pluto.’

The new close-up image released today showed an icy mountain range near the base of the heart with peaks jutting as high as 11,000 feet (3,500 meters) above the surface, announced John Spencer, New Horizons science team co-investigator at the media briefing.

“It’s a very young surface, probably formed less than 100 million years old,’ said Spencer. “It may be active now.”

Spencer also announce that the heart shaped region will now be named “Tombaugh Reggio” in honor of Clyde Tombaugh, the American astronomer who discovered Pluto in 1930.

“We are seeing water ice.”

“I never would have imagined this!” Spencer exclaimed.

“And I’m very surprised that there are no craters in the first high resolution images.”

The large, heart-shaped region is front and center. Several craters are seen and much of the surface looks reworked rather than ancient. Credit: NASA
Pluto nearly fills the frame in this image from the Long Range Reconnaissance Imager (LORRI) aboard NASA’s New Horizons spacecraft, taken on July 13, 2015 when the spacecraft was 476,000 miles (768,000 kilometers) from the surface. This is the last and most detailed image sent to Earth before the spacecraft’s closest approach to Pluto on July 14. The large, heart-shaped region is front and center. Several craters are seen and much of the surface looks reworked rather than ancient. Credit: NASA-JHUAPL-SwRI

The finding of ice mountains has major scientific implications.

Unlike the icy moons of giant planets, Pluto cannot be heated by gravitational interactions with a much larger planetary body. Some other process must be generating the mountainous landscape, said the team.

“This may cause us to rethink what powers geological activity on many other icy worlds,” says Spencer of SwRI.

NASA announces discovery of icy mountain ranges on Pluto at July 15 media briefing at Johns Hopkins University Applied Physics Laboratory. Credit: Ken Kremer/kenkremer.com
NASA announces discovery of icy mountain ranges on Pluto at July 15 media briefing at Johns Hopkins University Applied Physics Laboratory. Credit: Ken Kremer/kenkremer.com

“Pluto may have internal activity. There may be geysers or cryovolcanoes,” New Horizons principal investigator Alan Stern of the Southwest Research Institute, Boulder, Colorado, said during the media briefing. However there is no evidence for them yet.

Additional high resolution images for “Tombaugh Reggio” area are being transmitted back to Earth today and will continue.

“Finding a mountain range of ice is a complete surprise,” Stern noted.

After a nine year voyage through interplanetary space, New Horizons barreled past the Pluto system on Tuesday, July 14 for a history making first ever flyby at over 31,000 mph (49,600 kph), and survived the passage by swooping barely 7,750 miles (12,500 kilometers) above the planet’s amazingly diverse surface.

The team had to wait another 12 hours for confirmation that the spacecraft lived through the daring encounter when signals were reacquired as planned at 8:53 p.m. EDT last night. Since New Horizons swung past Pluto to continue its voyage, the probe is now more than million miles outbound just 24 hours later.

NASA Associate Administrator for the Science Mission Directorate John Grunsfeld, left, New Horizons Principal Investigator Alan Stern of Southwest Research Institute (SwRI), Boulder, CO, second from left, New Horizons Mission Operations Manager Alice Bowman of the Johns Hopkins University Applied Physics Laboratory (APL), second from right, and New Horizons Project Manager Glen Fountain of APL, right, are seen at the conclusion of a press conference after the team received confirmation from the spacecraft that it has completed the flyby of Pluto, Tuesday, July 14, 2015 at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. Credit:  Ken Kremer/kenkremer.com
NASA Associate Administrator for the Science Mission Directorate John Grunsfeld, left, New Horizons Principal Investigator Alan Stern of Southwest Research Institute (SwRI), Boulder, CO, second from left, New Horizons Mission Operations Manager Alice Bowman of the Johns Hopkins University Applied Physics Laboratory (APL), second from right, and New Horizons Project Manager Glen Fountain of APL, right, are seen at the conclusion of a press conference after the team received confirmation from the spacecraft that it has completed the flyby of Pluto, Tuesday, July 14, 2015 at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. Credit: Ken Kremer/kenkremer.com

The New Frontiers spacecraft was built by a team led by Stern and included researchers from SwRI and the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. APL also operates the New Horizons spacecraft and manages the mission.

NASA Administrator Charles Bolden congratulates the New Horizons team after successful Pluto flyby on July 14, 2015, to cheering crowd at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland, during  live NASA TV media briefing. Credit: Ken Kremer/kenkremer.com
NASA Administrator Charles Bolden congratulates the New Horizons team after successful Pluto flyby on July 14, 2015, to cheering crowd at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland, during live NASA TV media briefing. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite coverage of the Pluto flyby on July 14 from the Johns Hopkins University Applied Physics Laboratory (APL).

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

New Horizons science team co-investigator John Spencer examines print of the newest Pluto image taken on July 13, 2015 after the successful Pluto flyby. Credit: Ken Kremer/kenkremer.com
New Horizons science team co-investigator John Spencer examines print of the newest Pluto image taken on July 13, 2015 after the successful Pluto flyby. Credit: Ken Kremer/kenkremer.com

Big Discovery from NASA’s New Horizons; Pluto is Biggest Kuiper Belt Body

A portrait from the final approach. Pluto and Charon display striking color and brightness contrast in this composite image from July 11, showing high-resolution black-and-white LORRI images colorized with Ralph data collected from the last rotation of Pluto. Color data being returned by the spacecraft now will update these images, bringing color contrast into sharper focus. Credits: NASA-JHUAPL-SWRI

Plutophiles everywhere rejoice. On the eve of history’s first ever up close flyby of mysterious Pluto on Tuesday morning July 14 making the first detailed scientific observations, NASA’s New Horizons has made a big discovery about one of the most basic questions regarding distant Pluto. How big is it?

Measurements by New Horizons gathered just in the past few days as the spacecraft barrels towards the Pluto planetary system now confirm that Pluto is indeed the biggest object in the vast region beyond the orbit of Neptune known as the Kuiper Belt.

Pluto is thus the undisputed King of the Kuiper Belt!

Pluto measures 1,473 miles (2,370 kilometers) in diameter, which is at the higher end of the range of previous estimates.

The big news was announced today, by New Horizons principal investigator Alan Stern of the Southwest Research Institute, Boulder, Colorado, during a live media briefing at Pluto mission control at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland.

“This settles the debate about the largest object in the Kuiper Belt,” Stern noted.

11713794_669270766536791_5453013284858242275_o

New Horizons will swoop to within about 12,500 kilometers (nearly 7,750 miles) of Pluto’s surface and about 17,900 miles (28,800 kilometers) from Charon during closest approach at approximately 7:49 a.m. EDT (11:49 UTC) on July 14.

The new and definitive measurement of Pluto’s size is based on images taken by the high resolution Long Range Reconnaissance Imager (LORRI) to make this determination.

“The size of Pluto has been debated since its discovery in 1930. We are excited to finally lay this question to rest,” said mission scientist Bill McKinnon, Washington University, St. Louis.

Pluto was the first planet discovered by an American, Clyde Tombaugh.

Pluto’s “Heart” is seen in this new image from New Horizons’ Long Range Reconnaissance Imager (LORRI) received on July 8, 2015 after normal science operations resumed following the scary July 4 safe mode anomaly that briefing shut down all science operations.   The LORRI image has been combined with lower-resolution color information from the Ralph instrument.   Credits: NASA-JHUAPL-SWRI
Pluto’s “Heart” is seen in this new image from New Horizons’ Long Range Reconnaissance Imager (LORRI) received on July 8, 2015 after normal science operations resumed following the scary July 4 safe mode anomaly that briefing shut down all science operations. The LORRI image has been combined with lower-resolution color information from the Ralph instrument. Credits: NASA-JHUAPL-SWRI

Pluto is bigger than Eris, another big Kuiper Belt object discovered in 2005 by Mike Brown of Caltech, which is much further out from the Sun than Pluto. The discovery of Eris further fueled the controversial debate about the status of Pluto’s planethood.

Eris comes in second in size in the Kuiper Belt at only 1,445 miles (2,326 km) in diameter.

On July 11, 2015, New Horizons captured a world that is growing more fascinating by the day. For the first time on Pluto, this view reveals linear features that may be cliffs, as well as a circular feature that could be an impact crater. Rotating into view is the bright heart-shaped feature that will be seen in more detail during New Horizons’ closest approach on July 14. The annotated version includes a diagram indicating Pluto’s north pole, equator, and central meridian. Credits: NASA/JHUAPL/SWRI
On July 11, 2015, New Horizons captured a world that is growing more fascinating by the day. For the first time on Pluto, this view reveals linear features that may be cliffs, as well as a circular feature that could be an impact crater. Rotating into view is the bright heart-shaped feature that will be seen in more detail during New Horizons’ closest approach on July 14. The annotated version includes a diagram indicating Pluto’s north pole, equator, and central meridian.
Credits: NASA/JHUAPL/SWRI

Stern also noted that because Pluto is slight bigger than the average of previous estimates, its density is slightly lower than previously thought. Therefore the fraction of ice in its interior is slightly higher and the fraction of rock is slightly lower. But further data is required to pin the density down more precisely.

The uncertainty in Pluto’s size has persisted for decades and was due to the fact that Pluto has a very tenuous atmosphere composed of nitrogen.

Furthermore Pluto’s lowest atmospheric layer called the troposphere, is shallower than previously believed.

On the other hand, its largest moon Charon with which it forms a double planet, lacks a substantial atmosphere and its size was known with near certainty based on ground-based telescopic observation.

New Horizons LORRI imagery has confirmed that Charon measures 751 miles (1208 km) kilometers) across.

Stern also confirmed that frigid Pluto also has a polar cap composed of methane and nitrogen ices based on measurements from the Alice instrument.

LORRI has also zoomed in on two of Pluto’s smaller moons, Nix and Hydra.

“We knew from the time we designed our flyby that we would only be able to study the small moons in detail for just a few days before closest approach,” said Stern. “Now, deep inside Pluto’s sphere of influence, that time has come.”

The approximate sizes of Pluto’s moons Nix and Hydra compared to Denver, Colorado. While Nix and Hydra are illustrated as circles in this diagram, mission scientists anticipate that future observations by New Horizons will show that they are irregular in shape.  Credits: JHUAPL/Google
The approximate sizes of Pluto’s moons Nix and Hydra compared to Denver, Colorado. While Nix and Hydra are illustrated as circles in this diagram, mission scientists anticipate that future observations by New Horizons will show that they are irregular in shape. Credits: JHUAPL/Google

But because they are so small, accurate measurement with LORRI could only be made in the final week prior to the July 14 flyby.

Nix is estimated to be about 20 miles (about 35 kilometers) across, while Hydra is roughly 30 miles (roughly 45 kilometers) across. These sizes lead mission scientists to conclude that their surfaces are quite bright, possibly due to the presence of ice.

Determinations about Pluto’s two smallest moons, Kerberos and Styx, will be made later at some point during the 16-month long playback of data after the July 14 encounter.

It has been three decades since we last visited planetary bodies at the outer reaches of our solar system when Voyager 2 flew past Uranus and Neptune in 1986 and 1989.

New Horizons' last look at Pluto's Charon-facing hemisphere reveals the highest resolution view of four intriguing darks spots for decades to come.  This image, taken early the morning of July 11, 2015, shows newly-resolved linear features above the equatorial region that intersect, suggestive of polygonal shapes. This image was captured when the spacecraft was 2.5 million miles (4 million kilometers) from Pluto.  Credit: NASA/JHUAPL/SWRI
New Horizons’ last look at Pluto’s Charon-facing hemisphere reveals the highest resolution view of four intriguing darks spots for decades to come. This image, taken early the morning of July 11, 2015, shows newly-resolved linear features above the equatorial region that intersect, suggestive of polygonal shapes. This image was captured when the spacecraft was 2.5 million miles (4 million kilometers) from Pluto. Credit: NASA/JHUAPL/SWRI

New Horizons is closing in fast on its quarry at a whopping 31,000 mph (49,600 kph) after a nine year interplanetary voyage and is now less than half a million miles away, in the final hours before closest approach.

The New Frontiers spacecraft was built by a team led by Stern and included researchers from SwRI and the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. APL also operates the New Horizons spacecraft and manages the mission.

Watch for Ken’s continuing onsite coverage of the Pluto flyby on July 14 from the Johns Hopkins University Applied Physics Laboratory (APL).

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Last, Best Look at Pluto’s Far Side and Four Perplexing Spots: 2 Days Out from Flyby

New Horizons' last look at Pluto's Charon-facing hemisphere reveals the highest resolution view of four intriguing darks spots for decades to come. This image, taken early the morning of July 11, 2015, shows newly-resolved linear features above the equatorial region that intersect, suggestive of polygonal shapes. This image was captured when the spacecraft was 2.5 million miles (4 million kilometers) from Pluto. Credit: NASA/JHUAPL/SWRI

New Horizons’ last look at Pluto’s Charon-facing hemisphere reveals the highest resolution view of four intriguing darks spots for decades to come. This image, taken early the morning of July 11, 2015, shows newly-resolved linear features above the equatorial region that intersect, suggestive of polygonal shapes. This image was captured when the spacecraft was 2.5 million miles (4 million kilometers) from Pluto. Credit: NASA/JHUAPL/SWRI
Story updated[/caption]

Today (July 11) we got our last, best and clearest look at a quartet of perplexing dark spots on Pluto’s far side from NASA’s New Horizons spacecraft – now just two days and two million miles (4 million km) out from history’s first ever up close flyby of the Pluto system on Tuesday, July 14.

The four puzzling spots (see above) are located on the hemisphere of Pluto which always faces its largest moon, Charon, and have captivated the scientists and public alike. Pluto and Charon are gravitationally locked with an orbital period of 6.4 days.

Over only the past few days, we are finally witnessing an amazing assortment of geological wonders emerge into focus from these never before seen worlds – as promised by the New Horizons team over a decade ago.

Be sure to take a good hard look at the image, because these spots and Pluto’s Charon-facing hemisphere will not be visible to New Horizons cameras and spectrometers during the historic July 14 encounter as the spacecraft whizzes by the binary worlds at speeds of some 30,800 miles per hour (more than 48,600 kilometers per hour) for their first up close reconnaissance.

And it’s likely to be many decades before the next visitor from Earth arrives at the frigid worlds at the far flung reaches of our solar system for a longer look, hopefully from orbit.

“The [July 11] image is the last, best look that anyone will have of Pluto’s far side for decades to come,” said New Horizons principal investigator Alan Stern of the Southwest Research Institute, Boulder, Colorado, in a statement.

The image of the mysterious spots was taken earlier today (July 11) by New Horizons Long Range Reconnaissance Imager (LORRI) at a distance of 2.5 million miles (4 million kilometers) from Pluto, and just released by NASA. The image resolution is 10 miles per pixel. One week ago it was only 40 miles per pixel.

They were first seen only in very recent LORRI images as Pluto’s disk finally was resolved and are located in a Missouri sized area about 300 miles (480 kilometers) across and above the equatorial region.

But until today they were still rather fuzzy – see image below from July 3! What a difference a few million miles (km) makes!

Latest color image of Pluto taken on July 3, 2015. Best yet image of Pluto was taken by the LORRI imager on NASA’s New Horizons spacecraft on July 3, 2015 at a distance of 7.8 million mi (12.5 million km), just prior to the July 4 anomaly that sent New Horizons into safe mode. Color data taken from the Ralph instrument gathered earlier in the mission.  Credit: NASA/JHUAPL/SWRI
Latest color image of Pluto taken on July 3, 2015. Best yet image of Pluto was taken by the LORRI imager on NASA’s New Horizons spacecraft on July 3, 2015 at a distance of 7.8 million mi (12.5 million km), just prior to the July 4 anomaly that sent New Horizons into safe mode. Color data taken from the Ralph instrument gathered earlier in the mission. Credit: NASA/JHUAPL/SWRI

“The Pluto system is totally unknown territory,” said Dr. John Spencer, New Horizons co-investigator at today’s (July 11) daily live briefing from NASA and the New Horizons team.

“Pluto is like nowhere we’ve even been before. It is unlike anything we’ve visited before.”

Now, with the $700 million NASA planetary probe millions of miles closer to the double planet, the picture resolution has increased dramatically and the team can at least speculate.

Researchers say the quartet of “equally spaced” dark splotches are “suggestive of polygonal shapes” and the “boundaries between the dark and bright terrains are irregular and sharply defined.”

“It’s weird that they’re spaced so regularly,” says New Horizons program scientist Curt Niebur at NASA Headquarters in Washington.

However their nature remains “intriguing” and truly “unknown.”

“We can’t tell whether they’re plateaus or plains, or whether they’re brightness variations on a completely smooth surface,” added Jeff Moore of NASA’s Ames Research Center, Mountain View, California.

“It’s amazing what we are seeing now in the images, showing us things we’ve never seen before,” said Spencer.

“Every day we see things we never knew before. We see these crazy black and white patterns. And we have no idea what these mean.”

Answering these questions and more is what the encounter is all about.

Pluto is just chock full of mysteries, with new ones emerging every day as New Horizons at last homes in on its quarry, and the planet grows from a spot to an enlarging disk with never before seen surface features, three billion miles from Earth after an interplanetary journey of some nine and a half years.

“We see circular things and wonder are those craters? Or are they something else,” Spencer elaborated.

“We saw circular features on Neptune’s moon Triton that are not craters. So we should know in a few days . But right now we are just having an awful lot of fun just speculating. It’s just amazing.”

Until a few days ago, we didn’t know that “the other Red Planet” had a big bright heart and a dark ‘whale-shaped’ feature – see my earlier articles; here and here.

Pluto’s “Heart” is seen in this new image from New Horizons’ Long Range Reconnaissance Imager (LORRI) received on July 8, 2015 after normal science operations resumed following the scary July 4 safe mode anomaly that briefing shut down all science operations.   The LORRI image has been combined with lower-resolution color information from the Ralph instrument.   Credits: NASA-JHUAPL-SWRI
Pluto’s “Heart” is seen in this new image from New Horizons’ Long Range Reconnaissance Imager (LORRI) received on July 8, 2015 after normal science operations resumed following the scary July 4 safe mode anomaly that briefing shut down all science operations. The LORRI image has been combined with lower-resolution color information from the Ralph instrument. Credits: NASA-JHUAPL-SWRI

“When we combine images like this of the far side with composition and color data the spacecraft has already acquired but not yet sent to Earth, we expect to be able to read the history of this face of Pluto,” Moore explained.

New Horizons will swoop to within about 12,500 kilometers (nearly 7,750 miles) of Pluto’s surface and about 17,900 miles (28,800 kilometers) from Charon during closest approach at approximately 7:49 a.m. EDT (11:49 UTC) on July 14.

The probe was launched back on Jan. 19, 2006 on a United Launch Alliance Atlas V rocket on a 9 year voyage of over 3.6 billion miles (5.7 billion km).

Pluto is the last of the nine classical planets to be explored up close and completes the initial the initial reconnaissance of the solar system nearly six decades after the dawn of the space age. It represents a whole new class of objects.

“Pluto is a member of a whole new family of objects,” said Jim Green, director of Planetary Science, NASA Headquarters, Washington, in today’s live Pluto update.

“We call that the Kuiper Belt. And it is the outer solar system.”

New Horizons is equipped with a suite of seven science instruments gathering data during the approach and encounter phases with the Pluto system.

Graphic shows data gathered by New Horizons particle and plasma science instruments from 2 million miles out on July 11, 2015.  Credit: NASA/JHUAPL/SWRI
Graphic shows data gathered by New Horizons particle and plasma science instruments from 2 million miles out on July 11, 2015. Credit: NASA/JHUAPL/SWRI

The New Frontiers spacecraft was built by a team led by Stern and included researchers from SwRI and the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. APL also operates the New Horizons spacecraft and manages the mission.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Tantalizing signs of geology on Pluto are revealed in this image from New Horizons taken on July 9, 2015 from 3.3 million miles (5.4 million km) away. This annotated version shows the large dark feature nicknamed "the whale" that straddles Pluto's equator, a swirly band and a curious polygonal outline. At lower is a reference globe showing Pluto’s orientation in the image, with the equator and central meridian in bold. Credit:  NASA-JHUAPL-SWRI
Tantalizing signs of geology on Pluto are revealed in this image from New Horizons taken on July 9, 2015 from 3.3 million miles (5.4 million km) away. This annotated version shows the large dark feature nicknamed “the whale” that straddles Pluto’s equator, a swirly band and a curious polygonal outline. At lower is a reference globe showing Pluto’s orientation in the image, with the equator and central meridian in bold. Credit: NASA-JHUAPL-SWRI

Pluto’s ‘Heart’ Revealed as New Horizons Probe Starts Flyby Campaign: 5 Days Out

Pluto’s “Heart” is seen in this new image from New Horizons’ Long Range Reconnaissance Imager (LORRI) received on July 8, 2015 after normal science operations resumed following the scary July 4 safe mode anomaly that briefing shut down all science operations. The LORRI image has been combined with lower-resolution color information from the Ralph instrument. Credits: NASA-JHUAPL-SWRI

The Huge Heart of Pluto
Pluto’s “Heart” is seen in this new image from New Horizons’ Long Range Reconnaissance Imager (LORRI) received on July 8, 2015 after normal science operations resumed following the scary July 4 safe mode anomaly that briefing shut down all science operations. It shows ‘the heart and the whale’ along Pluto’s equator. The LORRI image has been combined with lower-resolution color information from the Ralph instrument. Credits: NASA-JHUAPL-SWRI
Story updated[/caption]

Emotions are rising exponentially with the rousing revelation that Pluto has a huge ‘Heart’ as revealed in stunning new imagery received just today (July 8) from NASA’s New Horizons spacecraft – which has also officially started its intensive flyby campaign merely 5 days out from humanity’s history making first encounter with the last unexplored planet in our Solar System on Tuesday, July 14.

Notably, today’s image showing Pluto’s ‘heart-shaped’ surface feature proves that New Horizons is now fully back in business following the nail-biting July 4 weekend anomaly that unexpectedly sent the probe into a protective status known as ‘safe mode’ and simultaneously sent mission engineers and scientists scurrying to their computer screens to resolve the scary issues and recover the probe back to full operation – just in the nick of time.

The intriguing ‘heart’ is the brightest area on Pluto and “may be a region where relatively fresh deposits of frost—perhaps including frozen methane, nitrogen and/or carbon monoxide—form a bright coating,” say mission scientists.

While in ‘safe mode’ all science operations were temporarily halted for nearly three days as the spacecraft inexorably zooms towards mysterious Pluto and its quintet of moons for our first up close reconnaissance of the frigid world and the Kuiper Belt.

Read my earlier story from July 6 here detailing how the science team and NASA resolved the July 4 anomaly and restored New Horizons to normal operations with little time to spare for its one time only flyby of the other ‘Red Planet’.

The close encounter sequence last for 9 days and it will take 16 months to relay back the vast quantity of data to be collected.

The view of Pluto’s ‘Heart’ was taken by the Long Range Reconnaissance Imager (LORRI) when the spacecraft was just under 5 million miles (8 million kilometers) from Pluto, and is the first to be received back on Earth since the anxiety rush caused by the July 4 anomaly.

The heart covers nearly half of Pluto’s now well resolved disk.

Right beside the large heart-shaped bright area, which measures some 1,200 miles (2,000 kilometers) across, is another enigmatic and elongated equatorial surface on the left side informally dubbed ‘the whale.’

Mission scientists say ‘the whale’ is one of the darkest regions visible to New Horizons and it measures some 1,860 miles (3,000 kilometers) in diameter, making it about 50% wider that the ‘heart.’

Above ‘the whale and the heart’ lies Pluto’s polar region that images show is intermediate in brightness.

NASA also released another perspective view of ‘the whale and the heart’ as seen below.

‘The whale and the heart of Pluto.’  This map of Pluto, made from images taken by the LORRI instrument aboard New Horizons, shows a wide array of bright and dark markings of varying sizes and shapes. Perhaps most intriguing is the fact that all of the darkest material on the surface lies along Pluto’s equator. The color version was created from lower-resolution color data from the spacecraft’s Ralph instrument.  Credits: NASA-JHUAPL-SWRI
‘The whale and the heart of Pluto.’
This map of Pluto, made from images taken by the LORRI instrument aboard New Horizons, shows a wide array of bright and dark markings of varying sizes and shapes. Perhaps most intriguing is the fact that all of the darkest material on the surface lies along Pluto’s equator. The color version was created from lower-resolution color data from the spacecraft’s Ralph instrument. Credits: NASA-JHUAPL-SWRI

Be sure to keep this entire area in mind – as if your appetites haven’t been whetted enough already – because “this view is centered roughly on the area that will be seen close-up during New Horizons’ July 14 closest approach,” says NASA.

“The next time we see this part of Pluto at closest approach, a portion of this region will be imaged at about 500 times better resolution than we see today,” said Jeff Moore, Geology, Geophysics and Imaging Team Leader of NASA’s Ames Research Center, in a statement. “It will be incredible!”

With barely 5 days to go until the once-in-a-lifetime opportunity for a fast flyby encounter of the ever intriguing binary planet traveling at the far flung reaches of the solar system, last minute glitches are the last thing anyone needs.

Why? Because there are no second chances as New Horizons barrels towards the Pluto system at approximately 30,000 miles per hour (over 48,000 kilometers per hour), which forms a binary planet with its largest known moon – Charon.

“The New Horizons spacecraft and science payload are now operating flawlessly,” Alan Stern, New Horizons principal investigator, Southwest Research Institute, Boulder, Colorado, announced at the July 6 post anomaly media briefing.

The nature of Pluto’s features that may appear to resemble craters or volcanoes is not yet known.

“We should be very cautious in interpreting these features,” Stern told Universe Today.

Latest color image of Pluto taken on July 3, 2015. Best yet image of Pluto was taken by the LORRI imager on NASA’s New Horizons spacecraft on July 3, 2015 at a distance of 7.8 million mi (12.5 million km), just prior to the July 4 anomaly that sent New Horizons into safe mode. Color data taken from the Ralph instrument gathered earlier in the mission.  Credit: NASA/JHUAPL/SWRI
Latest color image of Pluto taken on July 3, 2015. Best yet image of Pluto was taken by the LORRI imager on NASA’s New Horizons spacecraft on July 3, 2015 at a distance of 7.8 million mi (12.5 million km), just prior to the July 4 anomaly that sent New Horizons into safe mode. Color data taken from the Ralph instrument gathered earlier in the mission. Credit: NASA/JHUAPL/SWRI

New Horizons will swoop to within about 12,500 kilometers (nearly 7,750 miles) of Pluto’s surface and about 17,900 miles (28,800 kilometers) from Charon during closest approach at approximately 7:49 a.m. EDT (11:49 UTC) on July 14.

TThe probe was launched back on Jan. 19, 2006 on a United Launch Alliance Atlas V rocket on a 9 year voyage of over 3.6 billion miles (5.7 billion km).

“We are on our way to Pluto!” exclaimed Jim Green, director of Planetary Science, NASA Headquarters, Washington, at the July 6 news media briefing. “It’s really a historic time, fraught with many decisions and challenges on the way to the July 14 Pluto system encounter.”

“With Pluto in our sights, we’re going for the gold.”

Facts about Pluto. Credit: NASA
Facts about Pluto. Credit: NASA

The New Frontiers spacecraft was built by a team led by Stern and included researchers from SwRI and the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. APL also operates the New Horizons spacecraft and manages the mission.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

This trio of images are the most recent high-resolution views of Pluto sent by NASA’s New Horizons spacecraft, including one showing the four mysterious dark spots on Pluto that have captured the imagination of the world. The Long Range Reconnaissance Imager (LORRI) obtained these three images between July 1 and 3 of 2015, prior to the July 4 anomaly that sent New Horizons into safe mode. Credit: NASA/JHUAPL/SWRI
This trio of images are the most recent high-resolution views of Pluto sent by NASA’s New Horizons spacecraft, including one showing the four mysterious dark spots on Pluto that have captured the imagination of the world. The Long Range Reconnaissance Imager (LORRI) obtained these three images between July 1 and 3 of 2015, prior to the July 4 anomaly that sent New Horizons into safe mode. Credit: NASA/JHUAPL/SWRI