Messier 45 – The Pleiades Cluster

Pleiades stars. Image: NASA, ESA, AURA/Caltech, Palomar Observatory. Credit: D. Soderblom and E. Nelan (STScI), F. Benedict and B. Arthur (U. Texas), and B. Jones (Lick Obs.)

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the universally-renowned cluster known for its seven major points of light – The Pleiades Cluster!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these is the famous Pleiades Cluster, also known as the Seven Sisters (and countless other names). An open star cluster located approximately 390 to 456 light years from Earth in the constellation of Taurus, this cluster is dominated by very bright, hot blue stars. Being both bright and of one of the nearest star clusters to Earth, this cluster is easily visible to the naked eye in the night sky.


The nine brightest stars of the Pleiades are named for the Seven Sisters of Greek mythology: Sterope, Merope, Electra, Maia, Taygete, Celaeno, and Alcyone, along with their parents Atlas and Pleione. To the X-ray telescopes on board the orbiting ROSAT observatory, the cluster also presents an impressive, but slightly altered, appearance.

An optical image of the Pleiades. Credit: NOAO/AURA/NSF

This false color image was produced from ROSAT observations by translating different X-ray energy bands to visual colors – the lowest energies are shown in red, medium in green, and highest energies in blue. (The green boxes mark the position of the seven brightest visual stars.)

The Pleiades stars seen in X-rays have extremely hot, tenuous outer atmospheres called coronas and the range of colors corresponds to different coronal temperatures. This helps to determine mass and the presence of brown dwarf stars within Messier 45. As Greg Ushomirsky (et al) said in a 1998 study:

“We present an analytic calculation of the thermonuclear depletion of the light elements lithium, beryllium, and boron in fully convective, low-mass stars. Under the presumption that the pre-main-sequence star is always fully mixed during contraction, we find that the burning of these rare light elements can be computed analytically, even when the star is degenerate. Using the effective temperature as a free parameter, we constrain the properties of low-mass stars from observational data, independently of the uncertainties associated with modeling their atmospheres and convection. Our analytic solution explains the dependence of the age at a given level of elemental depletion on the stellar effective temperature, nuclear cross sections, and chemical composition. These results are also useful as benchmarks to those constructing full stellar models. Most importantly, our results allow observers to translate lithium nondetections in young cluster members into a model-independent minimum age for that cluster. Using this procedure, we have found lower limits to the ages of the Pleiades (100 Myr) and Alpha Persei (60 Myr) clusters. Dating an open cluster using low-mass stars is also independent of techniques that fit upper main-sequence evolution. Comparison of these methods provides crucial information on the amount of convective overshooting (or rotationally induced mixing) that occurs during core hydrogen burning in the 5-10 Mo stars typically at the main-sequence turnoff for these clusters.”

As one of the closest of star clusters to our solar system, M45 is dominated by hot blue stars that have only formed within the last 100 million years. Alongside Maia is a reflection nebula discovered by Tempel faint nebula which accompanies Merope was discovered by master observer E.E. Barnard. These were first believed to be left over from the formation of the cluster.

Messier 45. Credit: Boris Stromar

However, it didn’t take many years of observation of proper motion for astronomers to realize the Pleiades were actually moving through a cloud of interstellar dust. While this pleasing blue group is still only 440 light years away, it only has about another 250 million years left before tidal interactions will tear it apart. By then, its relative motion will have carried it from the constellation of Taurus to the southern portion of Orion!

Of course, many observers aren’t quite sure if they are seeing the nebulosity in M45 or not. Chances are, if you’re seeing what appears to be a “fog” around the bright stars – you’re on it. Only large aperture or photography reveals the full extent of the reflection nebula… and there’s a whole lot of scientific reasons for it. Said Steven Gibson (et al) in a 2003 study:

“The scattering geometry analysis is complicated by the blending of light from many stars and the likely presence of more than one scattering layer. Despite these complications, we conclude that most of the scattered light comes from dust in front of the stars in at least two scattering layers, one far in front and extensive, the other nearer the stars and confined to areas of heavy nebulosity. The first layer can be approximated as an optically thin, foreground slab whose line-of-sight separation from the stars averages ~0.7 pc. The second layer is also optically thin in most locations and may lie at less than half the separation of the first layer, perhaps with some material among or behind the stars. The association of nebulosity peripheral to the main condensation around the brightest stars is not clear. Models with standard grain properties cannot account for the faintness of the scattered UV light relative to the optical. Some combination of significant changes in grain model albedo and phase function asymmetry values is required. Our best-performing model has a UV albedo of 0.22+/-0.07 and a scattering asymmetry of 0.74+/-0.06. Hypothetical optically thick dust clumps missed by interstellar sight line measurements have little effect on the nebular colors but might shift the interpretation of our derived scattering properties from individual grains to the bulk medium.”

Since the Pleaides really is close to our solar system, have astronomers been able to detect anything within its boundaries that has surprised them? The answer is yes. according to a 1998 study by E.L. Martin:

“We present the discovery of an object in the Pleiades open cluster, named Teide 2, with optical and infrared photometry that places it on the cluster sequence slightly below the expected substellar mass limit. We have obtained low- and high-resolution spectra that allow us to determine its spectral type (M6), radial velocity, and rotational broadening and to detect H? in emission and Li I in absorption. All the observed properties strongly support the membership of Teide 2 in the Pleiades. This object has an important role in defining the reappearance of lithium below the substellar limit in the Pleiades.”

The M45 cluster. Credit: Wikipedia Commons/Did23

And what star is that? One cataloged as known as HD 23514, which has a mass and luminosity a bit greater than our Sun. But it’s a star surrounded by an extraordinary number of hot dust particles.  “Unusually massive amounts of dust, as seen at the Pleiades and Aries stars, cannot be primordial but rather must be the second-generation debris generated by collisions of large objects,” said Song, “”Collisions between comets or asteroids wouldn’t produce anywhere near the amount of dust we are seeing.”

The astronomers analyzed emissions from countless microscopic dust particles and concluded that the most likely explanation is that the particles are debris from the violent collision of planets or planetary embryos. Song calls the dust particles the “building blocks of planets,” which can accumulate into comets and small asteroid-size bodies and then clump together to form planetary embryos, eventually becoming full-fledged planets.

“In the process of creating rocky, terrestrial planets, some objects collide and grow into planets, while others shatter into dust,” Song said. “We are seeing that dust.”

History of Observation:

The recognition of the Pleiades dates back to antiquity, and its stars are known by many names in many cultures. The Greeks and Romans referred to them as the “Starry Seven,” the “Net of Stars,” “The Seven Virgins,” “The Daughters of Pleione,” and even “The Children of Atlas.” The Egyptians referred to them as “The Stars of Athyr;” the Germans as “Siebengestiren” (the Seven Stars); the Russians as “Baba” after Baba Yaga – the witch who flew through the skies on her fiery broom.

The Pleiades by Elihu Vedder (1885). Credit: Metropolitan Museum of Art, New York City.

The Japanese call them “Subaru;” Norsemen saw them as packs of dogs; and the Tongans as “Matarii” (the Little Eyes). American Indians viewed the Pleiades as seven maidens placed high upon a tower to protect them from the claws of giant bears, and even Tolkien immortalized the star group in The Hobbit as “Remmirath.” The Pleiades were even mentioned in the Bible! So, you see, no matter where we look in our “starry” history, this cluster of seven bright stars has been part of it.

Charles Messier would log it on March 4, 1769 where his only comment would be: “Cluster of stars known by the name Pleiades: the position reported is that of the star Alcyone.” Even though historic astronomers did little more than comment on M45’s presence, we’re still glad the Charles logged it – for it never received another “official” catalog designation!

Locating Messier 45:

Most normally the Pleiades are easily found with the unaided eye as a very visible cluster of stars about a hand span northwest of Orion. However, if sky conditions are bright, M45 might be a little more difficult to spot. If so, look for bright, red star Aldebaran and set your sights about 10 degrees (an average fist width) northwest.

It will show very easily in any size optics and under virtually any conditions – except for clouds and daylight! Messier 45’s large size makes it an ideal candidate for binoculars, where it will cover about half the average field of view. When using a telescope, chose the least amount of magnification possible to see the entire cluster and use higher magnification to study individual stars.

The location of the Centaurus constellation in the southern sky. Credit: IAU/Sky & Telescope magazine/Roger Sinnott & Rick Fienberg

And as always, here are the quick facts on this Messier Object to help you get started:

Object Name: Messier 45
Alternative Designations: M45, the Pleiades, Seven Sisters, Subaru
Object Type: Open Galactic Star Cluster, Reflection Nebula
Constellation: Taurus
Right Ascension: 03 : 47.0 (h:m)
Declination: +24 : 07 (deg:m)
Distance: 0.44 (kly)
Visual Brightness: 1.6 (mag)
Apparent Dimension: 110.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.


Venus and the Pleiades – See the Spectacle!

Venus glides up to the Pleiades or Seven Sisters star cluster this week. This was the view at dusk on April 4. Credit: Bob King

If you’ve ever been impressed by the brilliance of Venus or the pulchritude of the Pleiades,  you won’t want to miss what’s happening in the western sky this week.  Venus has been inching closer and closer to the star cluster for months. Come Friday and Saturday the two will be only  2.5° apart. What a fantastic sight they’ll make together — the sky’s brightest planet and arguably the most beautiful star cluster side by side at dusk. 

No fancy equipment is required for a great view of their close conjunction. The naked eye will do, though I recommend binoculars; a pair of 7 x 35s or 10 x 50s will increase the number of stars you’ll see more than tenfold.

Map showing Venus' path daily from April 6-15, 2015 as it makes a pass at the Pleiades. Created with Chris Marriott's SkyMap
Map showing Venus’ path daily from April 6-15, 2015 as it makes a pass at the Pleiades.  The close pairing will make for great photo opportunities . Created with Chris Marriott’s SkyMap

Just step outside between about 8:30 and 10 p.m. local time, face west and let Venus be your guide. At magnitude -4.1, it’s rivaled in brightness only by the Moon and Sun. Early this week, Venus will lie about 5° or three fingers held together at arm’s length below the Pleiades. But each day it snuggles up a little closer until closest approach on Friday. Around that time, you’ll be able to view both in the same binocular field. Outrageously bright Venus makes for a stunning contrast against the delicate pinpoint beauty of the star cluster.

Venus on April 3, 2012, when it last passed over the Seven Sisters cluster. Credit: Bob King
Venus on April 3, 2012, when it last passed right in front of  the Seven Sisters. The Pleiades  is a young cluster dominated by hot, blue-white stars located 444 light years from Earth. Credit: Bob King

Every 8 years on mid-April evenings, Venus skirts the Pleiades just as it’s doing this week. Think back to April 2007 and you might remember a similar passage; a repeat will happen in April 2023. Venus’ cyclical visits to the Seven Sisters occur because the planet’s motion relative to the Sun repeats every 8 years as seen from Earth’s skies. No matter where and when you see Venus – morning or evening, high or low – you’ll see it in nearly the same place 8 years from that date.

But this is where it gets interesting. On closer inspection, we soon learn that not every Venus-Pleiades passage is an exact copy. There are actually 3 varieties:

* Close: Venus passes squarely in front of the cluster
* Mid-distance: Venus passes ~2.5° from the cluster
* Far: Venus passes ~3.5° from the cluster

The three flavors of varieties of Venus-Pleiades conjunctions. Created with Stellarium
The three varieties of Venus-Pleiades conjunctions . Created with Stellarium

And get this — each has its own 8-year cycle. This week’s event is part of a series of mid-distance passages that recurs every 8 years. Venus last passed directly through Pleiades in April 2012 and will again in April 2020. The next most distant meeting (3.5°) happens in April 2018 and will again in 2026.

Venus circles between Earth and the Sun, causing it to go through phases just like the Moon. The planet is currently in gibbous phase as seen through a small telescope. Credit: Wikipedia with additions by the author
Venus circles between Earth and the Sun and experiences phases just like the Moon from our perspective. The planet is currently in gibbous phase. It reaches its greatest apparent distance from the Sun on June 6 and inferior conjunction on August 15. Credit: Wikipedia with additions by the author

Why three flavors? Venus’ orbit is tipped 3.4° to the plane of the ecliptic or the Sun-Earth line. During each of it 8-year close passages, it’s furthest north of the ecliptic and crosses within the Pleiades, which by good fortune lie about 4° north of the ecliptic. During the other two cycles, Venus lies closer to the ecliptic and misses the cluster by a few degrees.

Fascinating that a few simple orbital quirks allow for an ever-changing variety of paths for Venus to take around (and through!) one of our favorite star clusters.

What Are The Most Famous Stars?

Betelgeuse was the first star directly imaged -- besides our own Sun, of course. Image obtained by the Hubble Space Telescope. Credit: Andrea Dupree (Harvard-Smithsonian CfA), Ronald Gilliland (STScI), NASA and ESA

While there are untold billions of celestial objects visible in the nighttime sky, some of them are better known than others. Most of these are stars that are visible to the naked eye and very bright compared to other stellar objects. For this reason, most of them have a long history of being observed and studied by human beings, and most likely occupy an important place in ancient folklore.

So without further ado, here is a sampling of some of the better-known stars in that are visible in the nighttime sky:

Also known as the North Star (as well as the Pole Star, Lodestar, and sometimes Guiding Star), Polaris is the 45th brightest star in the night sky. It is very close to the north celestial pole, which is why it has been used as a navigational tool in the northern hemisphere for centuries. Scientifically speaking, this star is known as Alpha Ursae Minoris because it is the alpha star in the constellation Ursa Minor (the Little Bear).

The Polaris star system, as seen within the Ursa Minor constellation and up close. Credit: NASA, ESA, N. Evans (Harvard-Smithsonian CfA), and H. Bond (STScI)
The Polaris star system, as seen within the Ursa Minor constellation and up close. Credit: NASA, ESA, N. Evans (Harvard-Smithsonian CfA), and H. Bond (STScI)

It’s more than 430 light-years away from Earth, but its luminosity (being a white supergiant) makes it highly visible to us here on Earth. What’s more, rather than being a single supergiant, Polaris is actually a trinary star system, comprised of a main star (alpha UMi Aa) and two smaller companions (alpha UMi B, alpha UMi Ab). These, along with its two distant components (alpha UMi C, alpha UMi D), make it a multistar system.

Interestingly enough, Polaris wasn’t always the north star. That’s because Earth’s axis wobbles over thousands of years and points in different directions. But until such time as Earth’s axis moves farther away from the “Polestar”, it remains our guide.

Because it is what is known as a Cepheid variable star – i.e. a star that pulsates radially, varying in both temperature and diameter to produce brightness changes – it’s distance to our Sun has been the subject of revision. Many scientific papers suggest that it may be up to 30% closer to our Solar System than previously expected – putting it in the vicinity of 238 light years away.

Time exposure centered on Polaris, the North Star. Notice that the closer stars are to Polaris, the smaller the circles they describe. Stars at the edge of the frame make much larger circles. Credit: Bob King
Time exposure centered on Polaris, the North Star. Notice that the closer stars are to Polaris, the smaller the circles they describe. Stars at the edge of the frame make much larger circles. Credit: Bob King

Also known as the Dog Star, because it’s the brightest star in Canis Major (the “Big Dog”), Sirius is also the brightest star in the night sky. The name “Sirius” is derived from the Ancient Greek “Seirios“, which translates to “glowing” or “scorcher”. Whereas it appears to be a single bright star to the naked eye, Sirius is actually a binary star system, consisting of a white main-sequence star named Sirius A, and a faint white dwarf companion named Sirius B.

The reason why it is so bright in the sky is due to a combination of its luminosity and distance – at 6.8 light years, it is one of Earth’s nearest neighbors. And in truth, it is actually getting closer. For the next 60,000 years or so, astronomers expect that it will continue to approach our Solar System; at which point, it will begin to recede again.

In ancient Egypt, it was seen as a signal that the flooding of the Nile was close at hand. For the Greeks, the rising of Sirius in the night sky was a sign of the”dog days of summer”. To the Polynesians in the southern hemisphere, it marked the approach of winter and was an important star for navigation around the Pacific Ocean.

Alpha Centauri System:
Also known as Rigel Kent or Toliman, Alpha Centauri is the brightest star in the southern constellation of Centaurus and the third brightest star in the night sky. It is also the closest star system to Earth, at just a shade over four light-years. But much like Sirius and Polaris, it is actually a multistar system, consisting of Alpha Centauri A, B, and Proxima Centauri (aka. Centauri C).

Artist’s impression of the planet around Alpha Centauri B. Credit: ESO
Artist’s impression of the planet around Alpha Centauri B. Credit: ESO

Based on their spectral classifications, Alpha Centauri A is a main sequence white dwarf with roughly 110% of the mass and 151.9% the luminosity of our Sun. Alpha Centauri B is an orange subgiant with 90.7% of the Sun’s mass and 44.5% of its luminosity. Proxima Centauri, the smallest of the three, is a red dwarf roughly 0.12 times the mass of our Sun, and which is the closest of the three to our Solar System.

English explorer Robert Hues was the first European to make a recorded mention of Alpha Centauri, which he did in his 1592 work Tractatus de Globis. In 1689, Jesuit priest and astronomer Jean Richaud confirmed the existence of a second star in the system. Proxima Centauri was discovered in 1915 by Scottish astronomer Robert Innes, Director of the Union Observatory in Johannesburg, South Africa.

In 2012, astronomers discovered an Earth-sized planet around Alpha Centauri B. Known as Alpha Centauri Bb, it’s close proximity to its parent star likely means that it is too hot to support life.

Pronounced “Beetle-juice” (yes, the same as the 1988 Tim Burton movie), this bright red supergiant is roughly 65o light-year from Earth. Also known as Alpha Orionis, it is nevertheless easy to spot in the Orion constellation since it is one of the largest and most luminous stars in the night sky.

Betelgeuse, as seen by the Hubble Space Telescope. Credit: NASA
Betelgeuse, as seen by the Hubble Space Telescope, and in relation to the Orion constellation. Credit: NASA

The star’s name is derived from the Arabic name Ibt al-Jauza’, which literally means “the hand of Orion”. In 1985, Margarita Karovska and colleagues from the Harvard–Smithsonian Center for Astrophysics, announced the discovery of two close companions orbiting Betelgeuse. While this remains unconfirmed, the existence of possible companions remains an intriguing possibility.

What excites astronomers about Betelgeuse is it will one day go supernova, which is sure to be a spectacular event that people on Earth will be able to see. However, the exact date of when that might happen remains unknown.

Also known as Beta Orionis, and located between 700 and 900 light years away, Rigel is the brightest star in the constellation Orion and the seventh brightest star in the night sky. Here too, what appears to be a blue supergiant is actually a multistar system. The primary star (Rigel A) is a blue-white supergiant that is 21 times more massive than our sun, and shines with approximately 120,000 times the luminosity.

Rigel B is itself a binary system, consisting of two main sequence blue-white subdwarf stars. Rigel B is the more massive of the pair, weighing in at 2.5 Solar masses versus Rigel C’s 1.9. Rigel has been recognized as being a binary since at least 1831 when German astronomer F.G.W. Struve first measured it. A fourth star in the system has been proposed, but it is generally considered that this is a misinterpretation of the main star’s variability.

Rigel A is a young star, being only 10 million years old. And given its size, it is expected to go supernova when it reaches the end of its life.

Vega is another bright blue star that anchors the otherwise faint Lyra constellation (the Harp). Along with Deneb (from Cygnus) and Altair (from Aquila), it is a part of the Summer Triangle in the Northern hemisphere. It is also the brightest star in the constellation Lyra, the fifth brightest star in the night sky and the second brightest star in the northern celestial hemisphere (after Arcturus).

Characterized as a white dwarf star, Vega is roughly 2.1 times as massive as our Sun. Together with Arcturus and Sirius, it is one of the most luminous stars in the Sun’s neighborhood. It is a relatively close star at only 25 light-years from Earth.

Vega was the first star other than the Sun to be photographed and the first to have its spectrum recorded. It was also one of the first stars whose distance was estimated through parallax measurements, and has served as the baseline for calibrating the photometric brightness scale. Vega’s extensive history of study has led it to be termed “arguably the next most important star in the sky after the Sun.”

Artist's concept of a recent massive collision of dwarf planet-sized objects that may have contributed to the dust ring around the star Vega. Credit: NASA/JPL/Caltech/T. Pyle (SSC)
Artist’s concept of a recent massive collision of dwarf planet-sized objects that may have contributed to the dust ring around the star Vega. Credit: NASA/JPL/Caltech/T. Pyle (SSC)

Based on observations that showed excess emission of infrared radiation, Vega is believed to have a circumstellar disk of dust. This dust is likely to be the result of collisions between objects in an orbiting debris disk. For this reason, stars that display an infrared excess because of circumstellar dust are termed “Vega-like stars”.

Thousands of years ago, (ca. 12,000 BCE) Vega was used as the North Star is today, and will be so again around the year 13,727 CE.

Also known as the “Seven Sisters”, Messier 45 or M45, Pleiades is actually an open star cluster located in the constellation of Taurus. At an average distance of 444 light years from our Sun, it is one of the nearest star clusters to Earth, and the most visible to the naked eye. Though the seven largest stars are the most apparent, the cluster actually consists of over 1,000 confirmed members (along with several unconfirmed binaries).

The core radius of the cluster is about 8 light years across, while it measures some 43 light years at the outer edges. It is dominated by young, hot blue stars, though brown dwarfs – which are just a fraction of the Sun’s mass – are believed to account for 25% of its member stars.

Pleiades by Jamie Ball
Pleiades, also known as M45, is a prominent open star cluster in the sky. Image Credit: Jamie Ball

The age of the cluster has been estimated at between 75 and 150 million years, and it is slowly moving in the direction of the “feet” of what is currently the constellation of Orion. The cluster has had several meanings for many different cultures here on Earth, which include representations in Biblical, ancient Greek, Asian, and traditional Native American folklore.

Also known as Alpha Scorpii, Antares is a red supergiant and one of the largest and most luminous observable stars in the nighttime sky. It’s name – which is Greek for “rival to Mars” (aka. Ares) – refers to its reddish appearance, which resembles Mars in some respects. It’s location is also close to the ecliptic, the imaginary band in the sky where the planets, Moon and Sun move.

This supergiant is estimated to be 17 times more massive, 850 times larger in terms of diameter, and 10,000 times more luminous than our Sun. Hence why it can be seen with the naked eye, despite being approximately 550 light-years from Earth. The most recent estimates place its age at 12 million years.

A red supergiant, Antares is about 850 times the diameter of our own Sun, 15 times more massive, and 10,000 times brighter. Credit: NASA/Ivan Eder
A red supergiant, Antares is over 850 times the diameter of our own Sun, 15 times more massive, and 10,000 times brighter. Credit: NASA/Ivan Eder

Antares is the seventeenth brightest star that can be seen with the naked eye and the brightest star in the constellation Scorpius. Along with Aldebaran, Regulus, and Fomalhaut, Antares comprises the group known as the ‘Royal stars of Persia’ – four stars that the ancient Persians (circa. 3000 BCE) believed guarded the four districts of the heavens.

Also known as Alpha Carinae, this white giant is the brightest star in the southern constellation of Carina and the second brightest star in the nighttime sky. Located over 300 light-years away from Earth, this star is named after the mythological Canopus, the navigator for king Menelaus of Sparta in The Iliad. 

Thought it was not visible to the ancient Greeks and Romans, the star was known to the ancient Egyptians, as well as the Navajo, Chinese and ancient Indo-Aryan people. In Vedic literature, Canopus is associated with Agastya, a revered sage who is believed to have lived during the 6th or 7th century BCE. To the Chinese, Canopus was known as the “Star of the Old Man”, and was charted by astronomer Yi Xing in 724 CE.

An image of Canopus, as taken by crewmembers aboard the ISS. Credit: NASA
Image of Canopus, as taken by crew members aboard the ISS. Credit: NASA

It is also referred to by its Arabic name Suhayl (Soheil in persian), which was given to it by Islamic scholars in the 7th Century CE. To the Bedouin people of the Negev and Sinai, it was also known as Suhayl, and used along with Polaris as the two principal stars for navigation at night.

It was not until 1592 that it was brought to the attention of European observers, once again by Robert Hues who recorded his observations of it alongside Achernar and Alpha Centauri in his Tractatus de Globis (1592).

As he noted of these three stars, “Now, therefore, there are but three Stars of the first magnitude that I could perceive in all those parts which are never seene here in England. The first of these is that bright Star in the sterne of Argo which they call Canobus. The second is in the end of Eridanus. The third is in the right foote of the Centaure.”

This star is commonly used for spacecraft to orient themselves in space, since it is so bright compared to the stars surrounding it.

Universe Today has articles on what is the North Star and types of stars. Here’s another article about the 10 brightest stars. Astronomy Cast has an episode on famous stars.

Astrophoto: Beautiful Electric Blue Pleiades

M 45: The Pleiades. Credit: Chuck Manges

What a great shot of the Seven Sisters! M45, or the Pleiades is a cluster of stars that contains hundreds of stars, but just a handful are commonly visible to the unaided eye. The stars in the Pleiades are thought to have formed together around 100 million years ago, making them 1/50th the age of our Sun, and they lie about 450 light years from Earth. Chuck Manges, (astrochuck on Flickr) took this image on January 5, 2013 with a QHY9M camera and an Orion ED102CF telescope, and processed it in Photoshop. Gorgeous!

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Weekly SkyWatcher’s Forecast: October 29 – November 4, 2012

The Andromeda Galaxy Courtesy of Bob Kocar

Greetings, fellow SkyWatchers! Are you ready for some spooky targets this week? Then follow along as we take a look at the “Little Eyes”, the “Skull Nebula” and a star that’s as red as a drop of blood! If the weather permits, we’ll also be enjoying the Taruid Meteor Shower! Time to dust off those optics and meet me in the backyard…

Monday, October 29 – October’s Full Moon is known as the “Hunter’s Moon” or the “Blood Moon,” its name came from a time when hunters would stalk the fields by Luna’s cold light in search of prey before the winter season began. Pick a place at sunset to watch it rise – a place having a stationary point with which you can gauge its progress. Make note of the time when the first rim appears and then watch how quickly it gains altitude! How long does it take before it rises above your marker?

On this night in 1749, the French astronomer Le Gentil was at the eyepiece of an 18? focal length telescope. His object of choice was the Andromeda Galaxy, which he believed to be a nebula. Little did he know at the time that his descriptive notes also included M32, a satellite galaxy of M31. It was the first small galaxy discovered, and it would be another 175 years before these were recognized as such by Edwin Hubble.

Even though it’s very bright tonight, take the time to view the Andromeda Galaxy for yourself. Located just about a degree west of Nu Andromeda, this ghost set against the starry night was known as far back as 905 AD, and was referred to as the “Little Cloud.” Located about 2.2 million light-years from our solar system, this expansive member of our Local Galaxy Group has delighted observers of all ages throughout the years. No matter if you view with just your eyes, a pair of binoculars or a large telescope, M31 still remains one of the most spectacular galaxies in the night.

Tuesday, October 30 – Tonight let’s have a look at the big, fat Moon as we return again with binoculars to identify the maria once again. Take the time to repeat the names to yourself and to study a map. One of the keys to successfully learning to identify craters is by starting with large, easily recognized features. Even though the Moon is very bright when full, try using colored or Moon filters with your telescope to have a look at the many surface features which throw amazing patterns across its surface. If you have none, a pair of sunglasses will suffice.

Look for things you might not ordinarily notice – such as the huge streak which emanates from crater Menelaus. Look at the pattern projected from Proclus – or the intense little dot of little-known Pytheas north of Copernicus. It’s hard to miss the blinding beacon of Aristarchus! Check the southeastern limb where the edge of Furnerius lights up the landscape…or how a nothing crater like Censorinus shines on the southeast shore of Tranquillitatis, while Dionysus echoes it on the southwest. Could you believe Manlius just north of central could be such a perfect ring – or that Anaxagoras would look like a northern polar cap? On the eastern limb we see the bright splash ray patterns surrounding ancient Furnerius – yet the rays themselves emanate from the much younger crater Furnerius A. All over the visible side, we see small points light up: a testament to the Moon’s violent past written in its scarred lines. Take a look now at the western limb…for the sunrise is about to advance around it.

Wednesday, October 31 – Happy Halloween! Many cultures around the world celebrate this day with a custom known as “Trick or Treat.” Tonight instead of tricking your little ghouls and goblins, why not treat them to a sweet view through your telescope or binoculars? What Halloween would be complete without a witch?! Easily found from a modestly dark site with the unaided eye, the Pleiades can be spotted well above the northeastern horizon within a couple of hours of nightfall. To average skies, many of the 7 bright components will resolve easily without the use of optical aid, but to telescopes and binoculars? M45 (Right Ascension: 03 : 47.0 – Declination: +24 : 07) is stunning…

First let’s explore a bit of history. The recognition of the Pleiades dates back to antiquity and its stars are known by many names in many cultures. The Greeks and Romans referred to them as the “Starry Seven,” the “Net of Stars,” “The Seven Virgins,” “The Daughters of Pleione,” and even “The Children of Atlas.” The Egyptians referred to them as “The Stars of Athyr,” the Germans as “Siebengestiren” (the Seven Stars), the Russians as “Baba” after Baba Yaga, the witch who flew through the skies on her fiery broom. The Japanese call them “Subaru,” Norsemen saw them as packs of dogs and the Tonganese as “Matarii” (the Little Eyes). American Indians viewed the Pleiades as seven maidens placed high upon a tower to protect them from the claws of giant bears, and even Tolkien immortalized the stargroup in “The Hobbit” as “Remmirath.” The Pleiades have even been mentioned in the Bible! So, you see, no matter where we look in our “starry” history, this cluster of seven bright stars has been part of it. But, let’s have some Halloween fun!

The date of the Pleiades culmination (its highest point in the sky) has been celebrated through its rich history by being marked with various festivals and ancient rites – but there is one particular rite that really fits this occasion! What could be more spooky on this date than to imagine a group of Druids celebrating the Pleiades’ midnight “high” with Black Sabbath? This night of “unholy revelry” is still observed in the modern world as “All Hallow’s Eve” or more commonly as Halloween. Although the actual date of the Pleiades midnight culmination is now on November 21 instead of October 31, why break with tradition? Thanks to its nebulous regions, M45 looks wonderfully like a “ghost” haunting the starry skies.

Treat yourself and your loved ones to the “scariest” object in the night. Binoculars give an incredible view of the entire region, revealing far more stars than are visible with the naked eye. Small telescopes at lowest power will enjoy M45?s rich, icy-blue stars and fog-like nebulosity. Larger telescopes and higher power reveal many pairs of double stars buried within its silver folds. No matter what you choose, the Pleiades definitely rock!

Thursday, November 1 – On this day in 1977, Charles Kowal made a wild discovery – Chiron. This represented the first discovery of a multitude of tiny, icy bodies that lie in the outer reaches of our solar system. Collectively known as Centaurs, they reside in unstable orbits between Jupiter and Neptune and are almost certainly “refugees”” from the Kuiper Belt.

Tonight let’s go for something small, but white-hot as we head for a dwarf star and planetary nebula, NGC 246. You’ll find it just a bit more than a fistwidth north-northeast of Beta Ceti (RA 00 47 03.34 Dec -11 52 18.9).

First discovered by Sir William Herschel and cataloged as object V.25, this 8th magnitude planetary nebula has a wonderful patchy, diffuse structure that envelops four stars. Around 1600 light-years away, the nebulosity you can see around the exterior edges was once the outer atmosphere of a star much like our own Sun. At the center of the nebula lies the responsible star – the fainter member of a binary system. While it is now in the process of becoming a white dwarf, we can still enjoy the product of this expanding shell of gas that is often called the “Skull Nebula.”

Friday, November 2 – Celestial scenery alert! If you’re up when the Moon rises, be sure to look for the close pairing of Jupiter and the Moon – they’re only about a fingerwidth apart! For a few viewers in the southernmost Africa region, this is an occultation event, so be sure to check resources for websites like IOTA which will give you times for locations in your area. What a great photographic opportunity… Clear skies!
Today celebrates the birth of an astronomy legend – Harlow Shapely. Born in 1885, the American-born Shapley paved the way in determining distances to stars, clusters, and the center of our Milky Way galaxy. Among his many achievements, Shapely was also the Harvard College Observatory director for many years. Today in 1917 also represents the night first light was seen through the Mt. Wilson 100? telescope.

Of course, Dr. Shapley spent his fair share of time on the Hooker telescope as well. One of his many points of study was globular clusters, their distance, and their relationship to the halo structure of our galaxy. Tonight let’s have a look at a very unusual little globular located about a fistwidth south-southeast of Beta Ceti and just a couple of degrees north-northwest of Alpha Sculptor (RA 00:52:47.5 Dec -26:35:24), as we have a look at NGC 288.

Discovered by William Herschel on October 27, 1785, and cataloged by him as H VI.20, the class X globular cluster blew apart scientific thinking in the late 1980?s as a study of perimeter globulars showed it to be more than 3 million years older than similar globulars – thanks to the color magnitude diagrams of Hertzsprung and Russell. By identifying both its blue and red branches, it was shown that many of NGC 288?s stars are being stripped away by tidal forces and contributing to the formation of the Milky Way’s halo structure. In 1997, three additional variable stars were discovered in this cluster.
At magnitude 8, this small globular is easy for southern observers, but faint for northern ones. If you are using binoculars, be sure to look for the equally bright spiral galaxy NGC 253 to the globular’s north.

Saturday, November 3 – On this day in 1955, one of the few documented cases of a person being hit by a meteorite occurred. What are the odds on that? In 1957 the Russian space program launched its first “live” astronaut into space – Laika. Carried on board Sputnik 2, our canine hero was the first living creature to reach orbit. The speedily developed Sputnik 2 was designed with sensors to transmit the ambient pressure, breathing patterns and heartbeat of its passenger, and also had a television camera on board to monitor its occupant. The craft also studied ultraviolet and x-ray radiation to further assess the impact of space flight upon live occupants. Unfortunately, the technology of the time offered no way to return Laika to Earth, so she perished in space. On April 14, 1958, Laika and Sputnik 2 returned to Earth in a fiery re-entry after 2,570 orbits.

Since we’ve got the scope out, let’s go have another look at that galaxy we spied last night!

Discovered by Caroline Herschel on September 23, 1783, NGC 253 (RA 00 47.6 Dec -25 17) is the brightest member of a concentration of galaxies known as the Sculptor Group, near to our own local group and the brightest of all outside it. Cataloged as both H V.1 and Bennett 4, this 7th magnitude beauty is also known as Caldwell 65, and due to both its brightness and oblique angle is often called the “Silver Dollar Galaxy.” As part of the SAC 110 best NGCs, you can even spot this one if you don’t live in the Southern Hemisphere. At around 10 million light-years away, this very dusty, star-forming Seyfert galaxy rocks in even a modest telescope!

Sunday, November 4 – This morning will be the peak of the Southern Taurid meteor shower. Already making headlines around the world for producing fireballs, the Taurids will be best visible in the early morning hours, but the Moon will interfere. The radiant for this shower is, of course, the constellation of Taurus and red giant Aldeberan, but did you know the Taurids are divided into two streams?

It is surmised that the original parent comet shattered as it passed our Sun around 20,000 to 30,000 years ago. The larger “chunk” continued orbiting and is known as periodic comet Encke. The remaining debris field turned into smaller asteroids, meteors and larger fragments that often pass through our atmosphere creating the astounding “fireballs” known as bolides. Although the fall rate for this particular shower is rather low at 7 per hour, these slow traveling meteors (27 km or 17 miles per second) are usually very bright and appear to almost “trundle” across the sky. With the chances high all week of seeing a bolide, this makes a bit of quiet contemplation under the stars worthy of a morning walk. Be sure to look at how close Saturn is to the Moon!

For unaided eye or binocular observers – or those who just wish something a bit “different” tonight – have a look at 19 Pisces. You’ll find it as the easternmost star in the small “circlet” just south of the Great Square of Pegasus.

Also known as TX, you’ll find this one quite delightful for its strong red color. TX is a cool giant star which varies slightly in magnitude on an irregular basis. This carbon star is located anywhere from 400 to 1000 light-years away and rivals even R Leporis’ crimson beauty.

Until next week? Wishing you clear skies!

Spacecraft Captures Mercury-Jupiter Conjunction

Mercury (top) and Jupiter by the LASCO C3 instrument on the SOHO spacecraft. Credit: NASA/SOHO


Here’s a great shot from the Solar and Heliospheric Observatory (SOHO) spacecraft of Mercury (top planet) and Jupiter snuggling up together, along with the Pleiades cluster, all close to Sun, as seen from SOHO’s LASCO C3 instrument (Large Angle and Spectrometric Coronagraph). SOHO has been in space since 1995, and is a workhorse of solar observing, giving us insights into the workings of the Sun, comets and other bodies in the Solar System. Check out the SOHO website for more great images.

Hat tip to @Sungrazercomets on Twitter.

Watch Live Webcast of Venus-Pleiades Conjunction April 4, 2012

Venus on April 3, 2012, when it last passed over the Seven Sisters cluster. Credit: Bob King

There’s a nice meetup in the heavens tonight: bright Venus is snuggling up to one of the most famous star clusters, the Pleiades. The Slooh Space Camera is broadcasting a live, real-time feed of the most famous star cluster in the heavens, the Pleiades, meeting up with our nearest and brightest planetary neighbor, Venus. Slooh’s coverage will begin on Wednesday, April 4th starting at 1:30 PM PDT / 4:30 PM EDT / 20:30 UT. (This was originally scheduled for April 3rd, but was rescheduled due to high humidity at Canary Islands observatory off the coast of Africa.) The broadcast can be watched here, or accessed at Slooh’s homepage or by visiting Slooh’s G+ page, where you will be able to see the panel interact live via G+ Hangouts On Air.

If skies are clear, you can see the conjunction for yourself by looking toward the west in the constellation Taurus, after sunset, using binoculars. If you can get images of the event, we’ll post views of them. Share them on Universe Today’s Flickr page.

Continue reading “Watch Live Webcast of Venus-Pleiades Conjunction April 4, 2012”

WISE Mission Completes All-sky Infrared Survey

This view of the Pleiades star cluster is a composite of hundreds of WISE images, a tiny fraction of all those collected to complete the full-sky survey. Image credit: NASA/JPL-Caltech/UCLA


If you take a lot of digital pictures, you’re probably familiar with the frustration of keeping track of dozens of files, and always running out of hard drive space to store them. Well, the scientists and engineers on NASA’s Wide-field Infrared Survey Explorer (WISE) mission have no pity for you. Their spacecraft just finished photographing the entire sky in exquisite detail: a total of 1.3 million photos.

“The eyes of WISE have not blinked since launch,” said William Irace, the mission’s project manager at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “Both our telescope and spacecraft have performed flawlessly and have imaged every corner of our universe, just as we planned.”

WISE surveys the sky in strips as it orbits the earth. It takes six months of constant observing to map the entire sky. By pointing at every part of the sky, astronomical surveys deliver excellent data covering both well-known objects and those that have never been seen before.

“WISE is filling in the blanks on the infrared properties of everything in the universe from nearby asteroids to distant quasars,” said Peter Eisenhardt of JPL, project scientist for WISE. “But the most exciting discoveries may well be objects we haven’t yet imagined exist.”

One example of a well-known object seen in new light by WISE is the Pleiades cluster: a group of young blue stars shrouded by dust that the cluster is currently passing through. In WISE’s false-color infrared vision, the hot stars look blue but the cooler dust clouds give off longer wavelengths of infrared light, causing them to glow in shades of yellow and green.

The WISE survey is particularly significant because such a wide range of objects in the universe are visible in infrared light. Giant molecular clouds glow in infrared light, as do brown dwarfs – objects that are bigger than planets but smaller than true stars. WISE can also see ultra-bright, extremely distant galaxies whose visible light has been stretched into the infrared by the expansion of the universe during its multi-billion-year journey.

The recently completed WISE survey also observed 100,000 asteroids in our solar system, many of which had never been seen before. 90 of the newly discovered asteroids are near-earth objects, whose orbits cross our own, making them potentially dangerous but also potential targets for future mission.

You might think that 1.3 million pictures would be plenty, but WISE will keep mapping the sky for another three months, covering half of the sky again and allowing astronomers to search for changes. The mission will end when the spacecraft’s solid hydrogen coolant finally runs out and the infrared detectors warm up (they don’t work as well when they are warm enough to emit the same wavelengths of infrared light that they are meant to detect).

But even as the telescope warms up, the astronomers on the WISE team will just be getting warmed up too. With nearly two million images, they will be busy making new discoveries for years to come.