Trump Proposes $19.1 Billion 2018 NASA Budget, Cuts Earth Science and Education

NASA acting administrator Robert Lightfoot outlines NASA’s Fiscal Year 2018 budget proposal during a ‘State of NASA’ speech to agency employees held at NASA HQ on May 23, 2017. Credit: NASA TV/Ken Kremer

The Trump Administration has proposed a $19.1 Billion NASA budget request for Fiscal Year 2018, which amounts to a $0.5 Billion reduction compared to the recently enacted FY 2017 NASA Budget. Although it maintains many programs such as human spaceflight, planetary science and the Webb telescope, the budget also specifies significant cuts and terminations to NASA’s Earth Science and manned Asteroid redirect mission as well as the complete elimination of the Education Office.

Overall NASA’s FY 2018 budget is cut approximately 3%, or $560 million, for the upcoming fiscal year starting in October 2017 as part of the Trump Administration’s US Federal Budget proposal rolled out on May 23, and quite similar to the initial outline released in March.

The cuts to NASA are smaller compared to other Federal science agencies also absolutely vital to the health of US scientific research – such as the NIH, the NSF, the EPA, DOE and NIST which suffer unconscionable double digit slashes of 10 to 20% or more.

The highlights of NASA’s FY 2018 Budget were announced by NASA acting administrator Robert Lightfoot during a ‘State of NASA’ speech to agency employees held at NASA HQ, Washington, D.C. and broadcast to the public live on NASA TV.

Lightfoot’s message to NASA and space enthusiasts was upbeat overall.

“What this budget tells us to do is to keep going!” NASA acting administrator Robert Lightfoot said.

“Keep doing what we’ve been doing. It’s very important for us to maintain that course and move forward as an agency with all the great things we’re doing.”

“I want to reiterate how proud I am of all of you for your hard work – which is making a real difference around the world. NASA is leading the world in space exploration, and that is only possible through all of your efforts, every day.”

“We’re pleased by our top line number of $19.1 billion, which reflects the President’s confidence in our direction and the importance of everything we’ve been achieving.”

Lightfoot recalled the recent White House phone call from President Trump to NASA astronaut & ISS Station Commander Peggy Whitson marking her record breaking flight for the longest cumulative time in space by an American astronaut.

Thus Lightfoot’s vision for NASA has three great purposes – Discover, Explore, and Develop.

“NASA has a historic and enduring purpose. It can be summarized in three major strategic thrusts: Discover, Explore, and Develop. These correspond to our missions of scientific discovery, missions of exploration, and missions of new technology development in aeronautics and space systems.”

Lightfoot further recounted the outstanding scientific accomplishments of NASA’s Mars rover and orbiters paving the path for the agencies plans to send humans on a ‘Journey to Mars’ in the 2030s.

“We’ve had a horizon goal for some time now of reaching Mars, and this budget sustains that work and also provides the resources to keep exploring our solar system and look beyond it.”

Lightfoot also pointed to upcoming near term science missions- highlighting a pair of Mars landers – InSIGHT launching next year as well as the Mars 2020 rover. Also NASA’s next great astronomical observatory – the James Webb Space Telescope (JWST).

“In science, this budget supports approximately 100 missions: 40 missions currently preparing for launch & 60 operating missions.”

“The James Webb Space Telescope is built!” Lightfoot gleefully announced.

“It’s done testing at Goddard and now has moved to Johnson for tests to simulate the vacuum of space.”

JWST is the scientific successor to the Hubble Space Telescope and slated for launch in Oct. 2018. The budget maintains steady support for Webb.

The 18-segment gold coated primary mirror of NASA’s James Webb Space Telescope is raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on Nov. 2, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/

The Planetary Sciences division receives excellent support with a $1.9 Billion budget request. It includes solid support for the two flagship missions – Mars 2020 and Europa Clipper as well as the two new Discovery class missions selected -Lucy and Psyche.

“The budget keeps us on track for the next selection for the New Frontiers program, and includes formulation of a mission to Jupiter’s moon Europa.”

SLS and Orion are making great progress. They are far beyond concepts, and as I mentioned, components are being tested in multiple ways right now as we move toward the first flight of that integrated system.”

NASA is currently targeting the first integrated launch of SLS and Orion on the uncrewed Exploration Mission-1 (EM-1) for sometime in 2019.

Top NASA managers recently decided against adding a crew of two astronauts to the flight after conducting detailed agency wide studies at the request of the Trump Administration.

NASA would have needed an additional $600 to $900 to upgrade EM-1 with humans.

Unfortunately Trump’s FY 2018 NASA budget calls for a slight reduction in development funding for both SLS and Orion – thus making a crewed EM-1 flight fiscally unviable.

The newly assembled first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine (blue) on July 22, 2016. It was lifted out of the welder (top) after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/

The budget request does maintain full funding for both of NASA’s commercial crew vehicles planned to restore launching astronauts to low Earth orbit (LEO) and the ISS from US soil on US rockets – namely the crewed Dragon and CST-100 Starliner – currently under development by SpaceX and Boeing – thus ending our sole reliance on Russian Soyuz for manned launches.

“Working with commercial partners, NASA will fly astronauts from American soil on the first new crew transportation systems in a generation in the next couple of years.”

“We need commercial partners to succeed in low-Earth orbit, and we also need the SLS and Orion to take us deeper into space than ever before.”

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/

However the Trump Administration has terminated NASA’s somewhat controversial plans for the Asteroid Redirect Mission (ARM) – initiated under the Obama Administration – to robotically retrieve a near Earth asteroid and redirect it to lunar orbit for a visit by a crewed Orion to gather unique asteroidal samples.

“While we are ending formulation of a mission to an asteroid, known as the Asteroid Redirect Mission, many of the central technologies in development for that mission will continue, as they constitute vital capabilities needed for future human deep space missions.”

Key among those vital capabilities to be retained and funded going forward is Solar Electric Propulsion (SEP).

“Solar electric propulsion (SEP) for our deep space missions is moving ahead as a key lynchpin.”

The Trump Administration’s well known dislike for Earth science and disdain of climate change has manifested itself in the form of the termination of 5 current and upcoming science missions.

NASA’s FY 2018 Earth Science budget suffers a $171 million cut to $1.8 Billion.

“While we are not proposing to move forward with Orbiting Carbon Observatory-3 (OCO-3), Plankton, Aerosol, Cloud, ocean Ecosystem (PACE), Climate Absolute Radiance and Refractivity Observatory Pathfinder (CLARREO PF), and the Radiation Budget Instrument (RBI), this budget still includes significant Earth Science efforts, including 18 Earth observing missions in space as well as airborne missions.”

The DSCOVR Earth-viewing instruments will also be shut down.

NASA’s Office of Education will also be terminated completely under the proposed FY 2018 budget and the $115 million of funding excised.

“While this budget no longer supports the formal Office of Education, NASA will continue to inspire the next generation through its missions and the many ways that our work excites and encourages discovery by learners and educators. Let me tell you, we are as committed to inspiring the next generation as ever.”

Congress will now have its say and a number of Senators, including Republicans says Trumps budget is DOA.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Weekly Space Hangout – June 24, 2016: Dr. James Green

Host: Fraser Cain (@fcain)

Special Guest:
Dr. James Green is the NASA Director of Planetary Science.


Morgan Rehnberg ( / @MorganRehnberg)
Dave Dickinson ( / @astroguyz)
Kimberly Cartier ( / @AstroKimCartier )

Their stories this week:

Evidence for volcanic history on Mars

Impact of Brexit on UK science uncertain

FRIPON: A New All-Sky Meteor Network

A Solstice Full Moon

Water on (under) Pluto???

Blue Origin conducts fourth launch, test

We’ve had an abundance of news stories for the past few months, and not enough time to get to them all. So we are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (, which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

You can also join in the discussion between episodes over at our Weekly Space Hangout Crew group in G+!

Weekly Space Hangout – Nov. 13, 2015: Daniel Stern, Project Scientist on NuSTAR

Host: Fraser Cain (@fcain)

Special Guest: Daniel Stern, Project Scientist on NuSTAR.

Morgan Rehnberg ( / @MorganRehnberg )
Alessondra Springmann (@sondy)
Kimberly Cartier (@AstroKimCartier )
Continue reading “Weekly Space Hangout – Nov. 13, 2015: Daniel Stern, Project Scientist on NuSTAR”

Who was Gerard Kuiper?

In the outer reaches of the Solar System, beyond the orbit of Neptune, lies a region permeated by celestial objects and minor planets. This region is known as the “Kuiper Belt“, and is named in honor of the 20th century astronomer who speculated about the existence of such a disc decades before it was observed. This disc, he reasoned, was the source of the Solar Systems many comets, and the reason there were no large planets beyond Neptune.

Gerard Kuiper is also regarded by many as being the “father of planetary science”. During the 1960s and 70s, he played a crucial role in the development of infrared airborne astronomy, a technology which led to many pivotal discoveries that would have been impossible using ground-based observatories. At the same time, he helped catalog asteroids, surveyed the Moon, Mars and the outer Solar System, and discovered new moons.

Continue reading “Who was Gerard Kuiper?”

Astronomy Cast Ep. 361: Modern Women: Maria Zuber

Maria Zuber is one of the hardest working scientists in planetary science, being a part of six different space missions to explore the Solar System. Currently, she’s the lead investigator for NASA’s GRAIL mission.

Visit the Astronomy Cast Page to subscribe to the audio podcast!

We record Astronomy Cast as a live Google+ Hangout on Air every Monday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.

New Arecibo Radar Images Show Comet Responsible for Camelopardalids is an Icy, Cratered Mini World

When Comet 209P/LINEAR — the comet that brought us the Camelopardalids meteor shower last weekend – was first discovered in February of 2004, astronomers initially thought it was an asteroid. However, subsequent images of the objects showed it had a tail, and so it was reclassified as a comet. Now, new images taken by the Arecibo Observatory planetary radar system reveal Comet 209P/LINEAR has complex surface features that will require more analysis to fully interpret. This mini world seems to be filled with ridges and cliffs along with its icy surface.

“This is the highest resolution radar image we have obtained of a comet nucleus,” said Dr. Ellen Howell from the Universities Space Research Association, who led the observations of the comet at Arecibo, located in Puerto Rico.

The Arecibo Observatory is taking advantage of the approaching close pass of Earth by Comet 209P/LINEAR, taking these new radar images which confirm this comet to be about 2.4 by 3 km kilometers (1.5 x 1.8 miles) in size and elongated in shape. Earlier optical observations suggested this size range, but now these radar observations are the first direct measurement of the nucleus dimensions.

Radar images of Comet 209P/LINEAR taken from May 23 through May 27, 2014. The Earth is at the bottom of these images: the “side view” is a result of the radar imaging method. Several features are visible on the comet, perhaps ridges or cliffs. This is only the fifth comet nucleus imaged by Arecibo in the last 16 years, and the most detailed. Resolution in the vertical direction is 7.5 meters (25 feet) per pixel.  Image credit: Arecibo Observatory/NASA/Ellen Howell
Radar images of Comet 209P/LINEAR taken from May 23 through May 27, 2014. The Earth is at the bottom of these images: the “side view” is a result of the radar imaging method. Several features are visible on the comet, perhaps ridges or cliffs. This is only the fifth comet nucleus imaged by Arecibo in the last 16 years, and the most detailed. Resolution in the vertical direction is 7.5 meters (25 feet) per pixel. Image credit: Arecibo Observatory/NASA/Ellen Howell

Comets very rarely come this close to Earth, but don’t worry: Comet 209P/LINEAR is not coming close enough to cause any problems or concerns.

“Comet 209P/LINEAR has no chance of hitting Earth,” said data analyst Alessondra Springmann from Arecibo. “It comes no closer than 8.3 million kilometers (5.2 million miles) to Earth, safely passing our planet.”

But this relatively close pass makes this an extraordinary opportunity to get images of the surface. As Dr. Howell noted, these observations of are some of the most detailed. Just six comet nuclei have been imaged by spacecraft, and a wide variety of surface features and structures have been observed on these icy objects.

“We are being cautious,” Howell told Universe Today. “Radar images are not regular “spatial” images, and one can easily be misled by treating them as a regular picture. But proper analysis will take weeks or months, not minutes. What these radar images show is certainly not ordinary, but we don’t really have anything to compare to. The image looks different than asteroids we have imaged, but I don’t know what is due to surface feature differences and what might be scattering differences by the surface material.”

Comets have a central nucleus made of ice, dust, and rocks, and a coma of dust and gas. Two tails, one made of ions and one of dust, form in the direction pointing away from the sun.

Other comets seen by Arecibo radar include 103P/Hartley 2 and 8P/Tuttle, and 73P/Schwassmann-Wachmann 3.

Radar images of Comet 209P/LINEAR taken from May 23 through May 27, 2014. The Earth is at the bottom of these images: the “side view” is a result of the radar imaging method. Several features are visible on the comet, perhaps ridges or cliffs. This is only the fifth comet nucleus imaged by Arecibo in the last 16 years, and the most detailed. Resolution in the vertical direction is 7.5 meters (25 feet) per pixel.  Image credit: Arecibo Observatory/NASA/Ellen Howell
Radar images of Comet 209P/LINEAR taken from May 23 through May 27, 2014. The Earth is at the bottom of these images: the “side view” is a result of the radar imaging method. Several features are visible on the comet, perhaps ridges or cliffs. This is only the fifth comet nucleus imaged by Arecibo in the last 16 years, and the most detailed. Resolution in the vertical direction is 7.5 meters (25 feet) per pixel. Image credit: Arecibo Observatory/NASA/Ellen Howell

Unlike long period comets Hale-Bopp and the late Comet ISON that swing around the Sun once every few thousand years or few million years, Comet 209P/LINEAR visits our neighborhood frequently, coming ‘round every 5.09 years. However, it will not be close enough to Earth again for radar imaging any time in the next 100 years.

With a rotation period of approximately 11 hours as determined by Carl Hergenrother at the University of Arizona using the 1.8 meter VATT telescope, this comet is one of the many Jupiter family comets, which orbit the Sun twice for every time Jupiter orbits once.

It was discovered by the Lincoln Laboratory Near-Earth Asteroid Research (LINEAR) automated sky survey.

The Arecibo Observatory, located in Puerto Rico, is home to the world’s largest and most sensitive single-dish radio telescope at 305 meters (1000feet) across. This facility dedicates hundreds of hours a year of its telescope time to improving our knowledge of near-Earth asteroids and comets.

Dr. Howell specializes in studying comets and asteroids using radar, as well as passive radio and infrared spectroscopy techniques to determine the surface and coma properties of small solar system bodies. She was assisted in these observations of Comet 209P/LINEAR by Michael Nolan, Patrick Taylor, Alessondra Springmann, Linda Ford, and Luisa Zambrano.

Arecibo Observatory, and the complementary Goldstone Solar System Radar in California run by NASA’s Jet Propulsion Laboratory, are both observing comet 209P/LINEAR during its pass by Earth in May. These radar facilities are unique among telescopes on Earth for their ability to resolve features on comets and asteroids, while most optical telescopes on the ground would see these cosmic neighbors simply as unresolved points of light.

For more images and information on Comet 209P/LINEAR, see the Arecibo Observatory’s planetary radar page.

The Arecibo Observatory is operated by SRI International under a cooperative agreement with the National Science Foundation, and in alliance with the Sistema Universitario Ana G. Méndez-Universidad Metropolitana and the Universities Space Research Association. The Arecibo Planetary Radar program is supported by NASA’s Near Earth Object Observation program.

Planetary Scientist Colin Pillinger Dies

British planetary scientist Colin Pillinger has passed away. Pillinger, age 70, was best known as leading the 2003 attempt to land the Beagle 2 spacecraft on Mars, part of the European Space Agency’s Mars Express mission.

His family said in a statement: “It is with profound sadness that we are telling friends and colleagues that Colin, whilst sitting in the garden yesterday afternoon, suffered a severe brain hemorrhage resulting in a deep coma. He died peacefully this afternoon at Addenbrooke’s hospital, Cambridge, without regaining consciousness … We ask that all respect our privacy at this devastating and unbelievable time.”

While the Beagle 2 spacecraft failed and likely crashed on Mars, the mission was notable because it was the first time an individual researcher had sent their own vessel into space and the first British-built interplanetary spacecraft. However, a lack of funding meant the Beagle 2 project always struggled. The spacecraft did launch, but all contact with Beagle 2 was lost after its separation from the Mars Express spacecraft, just six days before atmospheric entry.

However, the BBC noted that the mission was “a turning point in bringing together the space science and industrial communities in the UK – which didn’t used to speak with one voice. Beagle-2 wasn’t built in Colin’s backyard: it was the product of UK brains and hard-work in many companies and universities.”

You can read more about Pillager’s career and achievements at the BBC and the International Business Times.

Oh, the Places We’ve Been: 21 Spacecraft Trajectories Plotted in One Picture

Want to know the orbital paths where different spacecraft have traveled and where they are now? A great new infographic put together by Kevin Gill is a visualization of where 21 different unmanned spacecraft have traveled through the Solar System. “The spacecraft data and planet orbital data is derived from NASA/JPL Horizons ephemeris,” said Gill on G+. “The image was rendered using a modified version of my Orbit Viewer WebGL application and put into infographic form using Photoshop. Body and spacecraft positions are as of December 15, 2013.”

By the way, Kevin’s orbit viewer is really fun to play with!

See the full infographic below or on Kevin’s website here:

Paths range from the earliest vector data available, typically just following launch, to either the latest data available or December 15, 2013, whichever is earlier.

“Originally intended as an animation, my browser was not too amused with the quantity of data being thrown at it,” Kevin said via G+. “In the new year, given sufficient demand, I may optimize the modeling and animation algorithms and either produce the animation or release it as a distinct WebGL visualization.”

We certainly look forward to that!

Three different views of our Solar System and the paths of unmanned spacecraft trajectories from their launches to Dec. 15, 2013. Credit: Kevin Gill.
Three different views of our Solar System and the paths of unmanned spacecraft trajectories from their launches to Dec. 15, 2013. Credit: Kevin Gill.

Mercury’s Surface is Full of Sulfur

The southern portion of Mercury’s Vivaldi basin and outlying rugged terrain

Named for the 17th-century Venetian composer, the southern half of Mercury’s Vivaldi basin is seen in this image acquired on August 26 by NASA’s MESSENGER spacecraft. The 213-km (132-mile) -wide crater’s smooth floor is contrasted by the incredibly rugged terrain beyond its outermost ring — a result of the ejected material that was flung out from the impact site and emphasized by the low angle of illumination.

The floor of the crater remained relatively smooth due to molten material that erupted in the wake of the impact event, flooding the basin.

Recent findings from the MESSENGER mission have revealed variations in Mercury’s surface composition due to volcanism that occurred at different times, as well as a surprising concentration of elements like magnesium and sulfur — much more so than any of the other terrestrial planets.

In results to be published in the Journal of Geophysical Research, scientists report that Mercury’s volcanic smooth plains differ in composition from older surrounding terrains. The older terrain has higher ratios of magnesium to silicon, sulfur to silicon, and calcium to silicon, but lower ratios of aluminum to silicon, suggesting that the smooth plains material erupted from a magma source that was chemically different from the source of the material in the older regions, according to Shoshana Weider of the Carnegie Institution of Washington, the lead author on the paper.

Mercury’s surface was also found to be high in magnesium and sulfur-enriched minerals.

“None of the other terrestrial planets have such high levels of sulfur. We are seeing about ten times the amount of sulfur than on Earth and Mars,” Weider said. “In terms of magnesium, we do have some materials on Earth that are high in magnesium. They tend to be ancient volcanic rocks that formed from very hot lavas. So this composition on Mercury tells us that eruptions of high-temperature lavas might have formed these high-magnesium materials.”

Read: MESSENGER Reveals Mercury’s Colors

The data was gathered with MESSENGER’s X-Ray Spectrometer (XRS) — one of two instruments designed to measure the abundances of many key elements in the top 2mm of Mercury’s crust. XRS detects emissions from elements in the 1-10 kiloelectron-volt (keV) range – specifically, magnesium, aluminum, silicon, sulfur, calcium, titanium, and iron.

Read more on the MESSENGER mission site here.

Inset image: A global mosaic of Mercury from MESSENGER (2011). Image credits: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Planetary Bake Sale and Car Wash to Support Exploration of the Solar System


Across the country, planetary scientists and students are planning for an upcoming bake sale and car wash on June 9, 2012. The event is in response to the 21% proposed budget cuts to planetary exploration, and while the volunteer bakers and washers will take donations, the main idea is to get the word out to the general public about the proposed budget slashing, and to ask people to send letters to their representatives. “Take Social Action and Participate,” says the event website. “Help Protect the NASA Planetary Budget from Cuts!”

The event was organized by Alan Stern, Principal Investigator of the New Horizons mission and former Associate Administrator of NASA’s Science Mission Directorate. There are several institutions across the US who already have events planned, (see here for planned events) and Stern is hoping for more events to be added. There’s even a ‘cookbook’ of ideas and instructions for how to host an event.

The event is supported by the Division for Planetary Sciences (DPS) of the American Astronomical Society, the world’s largest professional association of planetary scientists, which urges Congress to support and fund a vigorous planetary science program as recommended by the National Research Council. “We strongly believe that the robotic exploration of the solar system resonates with the American people; it is something that NASA needs to be doing and doing exceptionally well, and it is something the American people will support even in tight budget times,” the DPS said in a statement.

At the Lunar and Planetary Science Conference in March, Steve Squyres, Principal Investigator of the Mars Exploration Rovers and chair of the recent National Research Council (NRC) Decadal Survey for planetary science, said that for the planetary science budget to be restored, it would be crucial for the scientific community to respond in a unified fashion. “I’ve spent a lot of time looking at the budget, and as bad as it looks, they are looking for reasons to cut even further. There just is not enough money. What we just cannot do, we can’t give anyone reasons to cut even further. There are people looking to do that. We must respond as a unified voice.”

This bake sale and carwash is an attempt to have a unified voice across the country of showing how devastating the cuts would be for the future of NASA’s overall vision. President Obama has stated he will see astronauts on Mars in his lifetime, so the plan to put the Mars program essentially on hold is perplexing.

Additionally, the job losses and “institutional knowledge” losses would be devastating. “A 20% budget cut will likely equal 20% loss of jobs,” one commenter from the audience at the LPSC NASA Night event said. “People who land missions on Mars will lose their jobs, and when we get to the stage of landing humans on Mars, those with the know-how won’t be there.”

Check out the National Planetary Exploration Car Wash & Bake Sale website to see how you can support planetary science.