The Future of Space Colonization – Terraforming or Space Habitats?

The idea of terraforming Mars – aka “Earth’s Twin” – is a fascinating idea. Between melting the polar ice caps, slowly creating an atmosphere, and then engineering the environment to have foliage, rivers, and standing bodies of water, there’s enough there to inspire just about anyone! But just how long would such an endeavor take, what would it cost us, and is it really an effective use of our time and energy?

Such were the questions dealt with by two papers presented at NASA’s “Planetary Science Vision 2050 Workshop” last week (Mon. Feb. 27th – Wed. Mar. 1st). The first, titled “The Terraforming Timeline“, presents an abstract plan for turning the Red Planet into something green and habitable. The second, titled “Mars Terraforming – the Wrong Way“, rejects the idea of terraforming altogether and presents an alternative.

The former paper was produced by Aaron Berliner from the University of California, Berkeley, and Chris McKay from the Space Sciences Division at NASA Ames Research Center. In their paper, the two researchers present a timeline for the terraforming of Mars that includes a Warming Phase and an Oxygenation Phase, as well as all the necessary steps that would precede and follow.

Artist’s impression of the terraforming of Mars, from its current state to a livable world. Credit: Daein Ballard

As they state in their paper’s Introduction:

“Terraforming Mars can be divided into two phases. The first phase is warming the planet from the present average surface temperature of -60° C to a value close to Earth’s average temperature to +15° C, and recreating a thick CO² atmosphere. This warming phase is relatively easy and quick, and could take ~100 years. The second phase is producing levels of O² in the atmosphere that would allow humans and other large mammals to breath normally. This oxygenation phase is relatively difficult and would take 100,000 years or more, unless one postulates a technological breakthrough.”

Before these can begin, Berliner and McKay acknowledge that certain “pre-terraforming” steps need to be taken. These include investigating Mars’ environment to determine the levels of water on the surface, the level of carbon dioxide in the atmosphere and in ice form in the polar regions, and the amount of nitrates in Martian soil. As they explain, all of these are key to the practicality of making a biosphere on Mars.

So far, the available evidence points towards all three elements existing in abundance on Mars. While most of Mars water is currently in the form of ice in the polar regions and polar caps, there is enough there to support a water cycle – complete with clouds, rain, rivers and lakes. Meanwhile, some estimates claim that there is enough CO² in ice form in the polar regions to create an atmosphere equal to the sea level pressure on Earth.

Nitrogen is also a fundamental requirement for life and necessary constituent of a breathable atmosphere, and recent data by the Curiosity Rover indicate that nitrates account for ~0.03% by mass of the soil on Mars, which is encouraging for terraforming. On top of that, scientists will need to tackle certain ethical questions related to how terraforming could impact Mars.

Artist’s concept of a possible Mars terraforming plant. Credit: National Geographic Channel

For instance, if there is currently any life on Mars (or life that could be revived), this would present an undeniable ethical dilemma for human colonists – especially if this life is related to life on Earth. As they explain:

“If Martian life is related to Earth life – possibly due to meteorite exchange – then the situation is familiar, and issues of what other types of Earth life to introduce and when must be addressed. However, if Martian life in unrelated to Earth life and clearly represents a second genesis of life, then significant technical and ethical issues are raised.”

To break Phase One – “The Warming Phase” – down succinctly, the authors address an issue familiar to us today. Essentially, we are altering our own climate here on Earth by introducing CO² and “super greenhouse gases” to the atmosphere, which is increasing Earth’s average temperature at a rate of many degrees centigrade per century. And whereas this has been unintentional on Earth, on Mars it could be re-purposed to deliberately warm the environment.

“The timescale for warming Mars after a focused effort of super greenhouse gas production is short, only 100 years or so,” they claim. “If all the solar incident on Mars were to be captured with 100% efficiency, then Mars would warm to Earth-like temperatures in about 10 years. However, the efficiency of the greenhouse effect is plausibly about 10%, thus the time it would take to warm Mars would be ~100 years.”

Mars’ south polar ice cap, as seen in April of 2000 by the Mars Odyssey mission. Credit: NASA/JPL/MSSS

Once this thick atmosphere has been created, the next step involves converting it into something breathable for humans – where O² levels would be the equivalent of about 13% of sea level air pressure here on Earth and CO² levels would be less than 1%. This phase, known as the “Oxygenation Phase”, would take considerably longer. Once again, they turn towards a terrestrial example to show how such a process could work.

Here on Earth, they claim, the high levels of oxygen gas (O²) and low levels of CO² are due to photosynthesis. These reactions rely on the sun’s energy to convert water and carbon dioxide into biomass – which is represented by the equation H²O + CO² = CH²O + O². As they illustrate, this process would take between 100,000 and 170,000 years:

“If all the sunlight incident on Mars was harnessed with 100% efficiency to perform this chemical transformation it would take only 17 years to produce high levels of O². However, the likely efficiency of any process that can transform H²O and CO² into biomass and O² is much less than 100%. The only example we have of a process that can globally alter the CO² and O² of an entire plant is global biology. On Earth the efficiency of the global biosphere in using sunlight to produced biomass and O2 is 0.01%. Thus the timescale for producing an O² rich atmosphere on Mars is 10,000 x 17 years, or ~ 170,000 years.”

However, they make allowances for synthetic biology and other biotechnologies, which they claim could increase the efficiency and reduce the timescale to a solid 100,000 years. In addition, if human beings could utilize natural photosynthesis (which has a comparatively high efficiency of 5%) over the entire planet – i.e. planting foliage all over Mars – then the timescale could be reduced to even a few centuries.

Finally, they outline the steps that need to be taken to get the ball rolling. These steps include adapting current and future robotic missions to assess Martian resources, mathematical and computer models that could examine the processes involved, an initiative to create synthetic organisms for Mars, a means to test terraforming techniques in a limited environment, and a planetary agreement that would establish restrictions and protections.

Quoting Kim Stanley Robinson, author of the Red Mars Trilogy, (the seminal work of science fiction about terraforming Mars) they issue a call to action. Addressing how long the process of terraforming Mars will take, they assert that we “might as well start now”.

To this, Valeriy Yakovlev – an astrophysicist and hydrogeologist from Laboratory of Water Quality in Kharkov, Ukraine – offers a dissenting view. In his paper, “Mars Terraforming – the Wrong Way“, he makes the case for the creation of space biospheres in Low Earth Orbit that would rely on artificial gravity (like an O’Neill Cylinder) to allow humans to grow accustomed to life in space.

Looking to one of the biggest challenges of space colonization, Yakovlev points to how life on bodies like the Moon or Mars could be dangerous for human settlers. In addition to being vulnerable to solar and cosmic radiation, colonists would have to deal with substantially lower gravity. In the case of the Moon, this would be roughly 0.165 times that which humans experience here on Earth (aka. 1 g), whereas on Mars it would be roughly 0.376 times.

Interior view of an O’Neill Cylinder. There are alternating strips of livable surface and “windows” to let light in. Credit: Rick Guidice/NASA Ames Research Center

The long-term effects of this are not known, but it is clear it would include muscle degeneration and bone loss. Looking farther, it is entirely unclear what the effects would be for those children who were born in either environment. Addressing the ways in which these could be mitigated (which include medicine and centrifuges), Yakovlev points out how they would most likely be ineffective:

“The hope for the medicine development will not cancel the physical degradation of the muscles, bones and the whole organism. The rehabilitation in centrifuges is less expedient solution compared with the ship-biosphere where it is possible to provide a substantially constant imitation of the normal gravity and the protection complex from any harmful influences of the space environment. If the path of space exploration is to create a colony on Mars and furthermore the subsequent attempts to terraform the planet, it will lead to the unjustified loss of time and money and increase the known risks of human civilization.”

In addition, he points to the challenges of creating the ideal environment for individuals living in space. Beyond simply creating better vehicles and developing the means to procure the necessary resources, there is also the need to create the ideal space environment for families. Essentially, this requires the development of housing that is optimal in terms of size, stability, and comfort.

In light of this, Yakolev presents what he considers to be the most likely prospects for humanity’s exit to space between now and 2030. This will include the creation of the first space biospheres with artificial gravity, which will lead to key developments in terms of materials technology, life support-systems, and the robotic systems and infrastructure needed to install and service habitats in Low Earth Orbit (LEO).

Artist’s depiction of a pair of O’Neill cylinders. Credit: Rick Guidice/NASA Ames Research Center

These habitats could be serviced thanks to the creation of robotic spacecraft that could harvest resources from nearby bodies – such as the Moon and Near-Earth Objects (NEOs). This concept would not only remove the need for  planetary protections – i.e. worries about contaminating Mars’ biosphere (assuming the presence of bacterial life), it would also allow human beings to become accustomed to space more gradually.

As Yakovlev told Universe Today via email, the advantages to space habitats can be broken down into four points:

“1. This is a universal way of mastering the infinite spaces of the Cosmos, both in the Solar System and outside it. We do not need surfaces for installing houses, but resources that robots will deliver from planets and satellites. 2. The possibility of creating a habitat as close as possible to the earth’s cradle allows one to escape from the inevitable physical degradation under a different gravity. It is easier to create a protective magnetic field.

“3. The transfer between worlds and sources of resources will not be a dangerous expedition, but a normal life. Is it good for sailors without their families? 4. The probability of death or degradation of mankind as a result of the global catastrophe is significantly reduced, as the colonization of the planets includes reconnaissance, delivery of goods, shuttle transport of people – and this is much longer than the construction of the biosphere in the Moon’s orbit. Dr. Stephen William Hawking is right, a person does not have much time.”

And with space habitats in place, some very crucial research could begin, including medical and biologic research which would involve the first children born in space. It would also facilitate the development of reliable space shuttles and resource extraction technologies, which will come in handy for the settlement of other bodies – like the Moon, Mars, and even exoplanets.

Ultimately, Yakolev thinks that space biospheres could also be accomplished within a reasonable timeframe – i.e. between 2030 and 2050 – which is simply not possible with terraforming. Citing the growing presence and power of the commercial space sector, Yakolev also believed a lot of the infrastructure that is necessary is already in place (or under development).

“After we overcome the inertia of thinking +20 years, the experimental biosphere (like the settlement in Antarctica with watches), in 50 years the first generation of children born in the Cosmos will grow and the Earth will decrease, because it will enter the legends as a whole… As a result, terraforming will be canceled. And the subsequent conference will open the way for real exploration of the Cosmos. I’m proud to be on the same planet as Elon Reeve Musk. His missiles will be useful to lift designs for the first biosphere from the lunar factories. This is a close and direct way to conquer the Cosmos.”

With NASA scientists and entrepreneurs like Elon Musk and Bas Landorp looking to colonize Mars in the near future, and other commercial aerospace companies developing LEO, the size and shape of humanity’s future in space is difficult to predict. Perhaps we will jointly decide on a path that takes us to the Moon, Mars, and beyond. Perhaps we will see our best efforts directed into near-Earth space.

Or perhaps we will see ourselves going off in multiple directions at once. Whereas some groups will advocate creating space habitats in LEO (and later, elsewhere in the Solar System) that rely on artificial gravity and robotic spaceships mining asteroids for materials, others will focus on establishing outposts on planetary bodies, with the goal of turning them into “new Earths”.

Between them, we can expect that humans will begin developing a degree of “space expertise” in this century, which will certainly come in handy when we start pushing the boundaries of exploration and colonization even further!

Further Reading: USRA, USRA (2)

NASA’s Plans to Explore Europa and Other “Ocean Worlds”

Earlier this week, NASA hosted the “Planetary Science Vision 2050 Workshop” at their headquarters in Washington, DC. Running from Monday to Wednesday – February 27th to March 1st – the purpose of this workshop was to present NASA’s plans for the future of space exploration to the international community. In the course of the many presentations, speeches and panel discussions, many interesting proposals were shared.

Among them were two presentations that outlined NASA’s plan for the exploration of Jupiter’s moon Europa and other icy moons. In the coming decades, NASA hopes to send probes to these moons to investigate the oceans that lie beneath theirs surfaces, which many believe could be home to extra-terrestrial life. With missions to the “ocean worlds” of the Solar System, we may finally come to discover life beyond Earth.

The first of the two meetings took place on the morning of Monday, Feb. 27th, and was titled “Exploration Pathways for Europa after initial In-Situ Analyses for Biosignatures“. In the course of the presentation, Kevin Peter Hand – the Deputy Chief Scientist for Solar System Exploration at NASA’s Jet Propulsion Laboratory – shared findings from a report prepared by the 2016 Europa Lander Science Definition Team.

Artist’s rendering of a potential future mission to land a robotic probe on the surface of Jupiter’s moon Europa. Credits: NASA/JPL-Caltech

This report was drafted by NASA’s Planetary Science Division (PSD) in response to a congressional directive to begin a pre-Phase A study to assess the scientific value and engineering design of a Europa lander mission. These studies, which are known as Science Definition Team (SDT) reports, are routinely conducted long before missions are mounted in order to gain an understanding of the types of challenges it will face, and what the payoffs will be.

In addition to being the co-chair of the Science Definition Team, Hand also served as head of the project science team, which included members from the JPL and the California Institute of Technology (Caltech). The report he and his colleagues prepared was finalized and issued to NASA on February 7th, 2017, and outlined several objectives for scientific study.

As was indicated during the course of the presentation, these objectives were threefold. The first would involve searching for biosignatures and signs of life through analyses of Europa’s surface and near-subsurface material. The second would be to conduct in-situ analyses to characterize the composition of non-ice near-subsurface material, and determine the proximity of liquid water and recently-erupted material near the lander’s location.

The third and final goal would be to characterize the surface and subsurface properties and what dynamic processes are responsible for shaping them, in support for future exploration missions. As Hand explained, these objectives are closely intertwined:

“Were biosignatures to be found in the surface material, direct access to, and exploration of, Europa’s ocean and liquid water environments would be a high priority goal for the astrobiological investigation of our Solar System. Europa’s ocean would harbor the potential for the study of an extant ecosystem, likely representing a second, independent origin of life in our own solar system. Subsequent exploration would require robotic vehicles and instrumentation capable of accessing the habitable liquid water regions in Europa to enable the study of the ecosystem and organisms.”

Artist’s impression of a hypothetical ocean cryobot (a robot capable of penetrating water ice) in Europa. Credit: NASA

In other words, if the lander mission detected signs of life within Europa’s ice sheet, and from material churned up from beneath by resurfacing events, then future missions – most likely involving robotic submarines – would definitely be mounted. The report also states that any finds that are indicative of life would mean that planetary protections would be a major requirement for any future mission, to avoid the possibility of contamination.

But of course, Hand also admitted that there is a chance the lander will find no signs of life. If so, Hand indicated that future missions would be tasked with gaining “a better understanding of the fundamental geological and geophysical process on Europa, and how they modulate exchange of material with Europa’s ocean.” On the other hand, he claimed that even a null-result (i.e. no signs of life anywhere) would still be a major scientific find.

Ever since the Voyager probes first detected possible signs of an interior ocean on Europa, scientists have dreamed of the day when a  mission might be possible to explore the interior of this mysterious moon. To be able to determine that life does not exist there could no less significant that finding life, in that both would help us learn more about life in our Solar System.

The Science Definition Team’s report will also be the subject of a townhall meeting at the 2017 Lunar and Planetary Science Conference (LPSC) – which will be taking place from March 20th to 24th in The Woodlands, Texas. The second event will be on April 23rd at the Astrobiology Science Conference (AbSciCon) held in Mesa, Arizona. Click here to read the full report.

Saturn’s moon Enceladus is another popular destination for proposed missions since it is believed to potentially host extra-terrestrial life. Credit: NASA/JPL/Space Science Institute

The second presentation, titled “Roadmaps to Ocean Worlds” took place later on Monday, Feb. 27th. This presentation was put on by members of the the Roadmaps to Ocean Worlds (ROW) team, which is chaired by Dr. Amandra Hendrix – a senior scientist at the Planetary Science Institute in Tuscon, Arizona – and Dr. Terry Hurford, a research assistant from NASA’s Science and Exploration Directorate (SED).

As a specialist in UV spectroscopy of planetary surfaces, Dr. Hendrix has collaborated with many NASA missions to explore icy bodies in the Solar System – including the Galileo and Cassini probes and the Lunar Reconnaissance Orbiter (LRO). Dr. Hurford, meanwhile, specializes in the geology and geophysics of icy satellites, as well as the effects orbital dynamics and tidal stresses have on their interior structures.

Founded in 2016 by NASA’s Outer Planets Assessment Group (OPAG), ROW was tasked with laying the groundwork for a mission that will explore “ocean worlds” in the search for life elsewhere in the Solar System. During the course of the presentation, Hendrix and Hurford laid out the findings from the ROW report, which was completed in January of 2017.

As they state in this report, “we define an ‘ocean world’ as a body with a current liquid ocean (not necessarily global). All bodies in our solar system that plausibly can have or are known to have an ocean will be considered as part of this document. The Earth is a well-studied ocean world that can be used as a reference (“ground truth”) and point of comparison.”

Dwarf planet Ceres is shown in this false-color renderings, which highlight differences in surface materials. The image is centered on Ceres brightest spots at Occator crater. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

By this definition, bodies like Europa, Ganymede, Callisto, and Enceladus would all be viable targets for exploration. These worlds are all known to have subsurface oceans, and there has been compelling evidence in the past few decades that point towards the presence of organic molecules and prebiotic chemistry there as well. Triton, Pluto, Ceres and Dione are all mentioned as candidate ocean worlds based on what we know of them.

Titan also received special mention in the course of the presentation. In addition to having an interior ocean, it has even been ventured that extremophile methanogenic lifeforms could exist on its surface:

“Although Titan possesses a large subsurface ocean, it also has an abundant supply of a wide range of organic species and surface liquids, which are readily accessible and could harbor more exotic forms of life. Furthermore, Titan may have transient surface liquid water such as impact melt pools and fresh cryovolcanic flows in contact with both solid and liquid surface organics. These environments present unique and important locations for investigating prebiotic chemistry, and potentially, the first steps towards life.”

Ultimately, the ROW’s pursuit of life on “ocean worlds” consists of four main goals. These include identifying ocean worlds in the solar system, which would mean determining which of the worlds and candidate worlds would be well-suited to study. The second is to characterize the nature of these oceans, which would include determining the properties of the ice shell and liquid ocean, and what drives fluid motion in them.

Artist’s conception of the Titan Aerial Daughtercraft on Saturn’s moon Titan. Credit: NASA

The third sub-goal involves determining if these oceans have the necessary energy and prebiotic chemistry to support life. And the fourth and final goal would be to determine how life might exist in them – i.e. whether it takes the form of extremophile bacteria and tiny organisms, or more complex creatures. Hendrix and Hurford also covered the kind of technological advances that will be needed for such missions to happen.

Naturally, any such mission would require the development of power sources and energy storage systems that would be suitable for cryogenic environments. Autonomous systems for pinpoint landing and technologies for aerial or landed mobility would also be needed. Planetary protection technologies would be necessary to prevent contamination, and electronic/mechanical systems that can survive in an ocean world environment too,

While these presentations are merely proposals of what could happen in the coming decades, they are still exciting to hear about. If nothing else, they show how NASA and other space agencies are actively collaborating with scientific institutions around the world to push the boundaries of knowledge and exploration. And in the coming decades, they hope to make some substantial leaps.

If all goes well, and exploration missions to Europa and other icy moons are allowed to go forward, the benefits could be immeasurable. In addition to the possibility of finding life beyond Earth, we will come to learn a great deal about our Solar System, and no doubt learn something more about humanity’s place in the cosmos.

Further Reading: NASA, USRA, USRA (2)

NASA Proposes A Magnetic Shield to Protect Mars’ Atmosphere

This week, NASA’s Planetary Science Division (PSD) hosted a community workshop at their headquarters in Washington, DC. Known as the “Planetary Science Vision 2050 Workshop“, this event ran from February 27th to March 1st, and saw scientists and researchers from all over the world descend on the capitol to attend panel discussions, presentations, and talks about the future of space exploration.

One of the more intriguing presentations took place on Wednesday, March 1st, where the exploration of Mars by human astronauts was discussed. In the course of the talk, which was titled “A Future Mars Environment for Science and Exploration“, Director Jim Green discussed how deploying a magnetic shield could enhance Mars’ atmosphere and facilitate crewed missions there in the future.

The current scientific consensus is that, like Earth, Mars once had a magnetic field that protected its atmosphere. Roughly 4.2 billion years ago, this planet’s magnetic field suddenly disappeared, which caused Mars’ atmosphere to slowly be lost to space. Over the course of the next 500 million years, Mars went from being a warmer, wetter environment to the cold, uninhabitable place we know today.

Artist’s rendering of a solar storm hitting Mars and stripping ions from the planet’s upper atmosphere. Credits: NASA/GSFC

This theory has been confirmed in recent years by orbiters like the ESA’s Mars Express and NASA’s Mars Atmosphere and Volatile EvolutioN Mission (MAVEN), which have been studying the Martian atmosphere since 2004 and 2014, respectively. In addition to determining that solar wind was responsible for depleting Mars’ atmosphere, these probes have also been measuring the rate at which it is still being lost today.

Without this atmosphere, Mars will continue to be a cold, dry place where life cannot flourish. In addition to that, future crewed mission – which NASA hopes to mount by the 2030s – will also have to deal with some severe hazards. Foremost among these will be exposure to radiation and the danger of asphyxiation, which will pose an even greater danger to colonists (should any attempts at colonization be made).

In answer to this challenge, Dr. Jim Green – the Director of NASA’s Planetary Science Division – and a panel of researchers presented an ambitious idea. In essence, they suggested that by positioning a magnetic dipole shield at the Mars L1 Lagrange Point, an artificial magnetosphere could be formed that would encompass the entire planet, thus shielding it from solar wind and radiation.

Naturally, Green and his colleagues acknowledged that the idea might sounds a bit “fanciful”. However, they were quick to emphasize how new research into miniature magnetospheres (for the sake of protecting crews and spacecraft) supports this concept:

“This new research is coming about due to the application of full plasma physics codes and laboratory experiments. In the future it is quite possible that an inflatable structure(s) can generate a magnetic dipole field at a level of perhaps 1 or 2 Tesla (or 10,000 to 20,000 Gauss) as an active shield against the solar wind.”

The proposed method for creating an artificial magnetic dipole at Mars’ L1 Lagrange Point. Credit: NASA/J.Green

In addition, the positioning of this magnetic shield would ensure that the two regions where most of Mars’ atmosphere is lost would be shielded. In the course of the presentation, Green and the panel indicated that these the major escape channels are located, “over the northern polar cap involving higher energy ionospheric material, and 2) in the equatorial zone involving a seasonal low energy component with as much as 0.1 kg/s escape of oxygen ions.”

To test this idea, the research team – which included scientists from Ames Research Center, the Goddard Space Flight Center, the University of Colorado, Princeton University, and the Rutherford Appleton Laboratory – conducted a series of simulations using their proposed artificial magnetosphere. These were run at the Coordinated Community Modeling Center (CCMC), which specializes in space weather research, to see what the net effect would be.

What they found was that a dipole field positioned at Mars L1 Lagrange Point would be able to counteract solar wind, such that Mars’ atmosphere would achieve a new balance. At present, atmospheric loss on Mars is balanced to some degree by volcanic outpassing from Mars interior and crust. This contributes to a surface atmosphere that is about 6 mbar in air pressure (less than 1% that at sea level on Earth).

As a result, Mars atmosphere would naturally thicken over time, which lead to many new possibilities for human exploration and colonization. According to Green and his colleagues, these would include an average increase of about 4 °C (~7 °F), which would be enough to melt the carbon dioxide ice in the northern polar ice cap. This would trigger a greenhouse effect, warming the atmosphere further and causing the water ice in the polar caps to melt.

At one time, Mars had a magnetic field similar to Earth, which prevented its atmosphere from being stripped away. Credit: NASA

By their calculations, Green and his colleagues estimated that this could lead to 1/7th of Mars’ oceans – the ones that covered it billions of years ago – to be restored. If this is beginning to sound a bit like a lecture on how to terraform Mars, it is probably because these same ideas have been raised by people who advocating that very thing. But in the meantime, these changes would facilitate human exploration between now and mid-century.

“A greatly enhanced Martian atmosphere, in both pressure and temperature, that would be enough to allow significant surface liquid water would also have a number of benefits for science and human exploration in the 2040s and beyond,” said Green. “Much like Earth, an enhanced atmosphere would: allow larger landed mass of equipment to the surface, shield against most cosmic and solar particle radiation, extend the ability for oxygen extraction, and provide “open air” greenhouses to exist for plant production, just to name a few.”

These conditions, said Green and his colleagues, would also allow for human explorers to study the planet in much greater detail. It would also help them to determine the habitability of the planet, since many of the signs that pointed towards it being habitable in the past (i.e. liquid water) would slowly seep back into the landscape. And if this could be achieved within the space of few decades, it would certainly help pave the way for colonization.

In the meantime, Green and his colleagues plan to review the results of these simulations so they can produce a more accurate assessment of how long these projected changes would take. It also might not hurt to conduct some cost-assessments of this magnetic shield. While it might seem like something out of science fiction, it doesn’t hurt to crunch the numbers!

Stay tuned for more stories from the Planetary Science Vision 2050 Workshop!

Further Reading: USRA