Webb Joins the Hunt for Protoplanets

This artist’s impression shows the formation of a gas giant planet embedded in the disk of dust and gas in the ring of dust around a young star. A University of Michigan study aimed the James Webb Space Telescope at a protoplanetary disk surrounding a protostar called SAO 206462, hoping to find a gas giant planet in the act of forming. Image credit: ESO/L. Calçada

We can’t understand what we can’t clearly see. That fact plagues scientists who study how planets form. Planet formation happens inside a thick, obscuring disk of gas and dust. But when it comes to seeing through that dust to where nascent planets begin to take shape, astronomers have a powerful new tool: the James Webb Space Telescope.

Continue reading “Webb Joins the Hunt for Protoplanets”

This Planet-Forming Disk has More Water Than Earth’s Oceans

Astronomers have found water vapour in a disc around a young star exactly where planets may be forming. In this image, the new observations from the Atacama Large Millimeter/submillimeter Array (ALMA) show the water vapour in shades of blue. Image Credit: ALMA (ESO/NAOJ/NRAO)/S. Facchini et al.

Astronomers have detected a large amount of water vapour in the protoplanetary disk around a young star. There’s at least three times as much water among the dust as there is in all of Earth’s oceans combined. And it’s not spread throughout the disk; it’s concentrated in the inner disk region.

Continue reading “This Planet-Forming Disk has More Water Than Earth’s Oceans”

How We Get Planets from Clumping Dust

This artist’s impression shows a young star surrounded by a protoplanetary disk, where dust grains gather together to form planetesimals—the building blocks of new planets. © ESO/L. Calçada

Our gleaming Earth, brimming with liquid water and swarming with life, began as all rocky planets do: dust. Somehow, mere dust can become a life-bearing planet given enough time and the right circumstances. But there are unanswered questions about how dust forms any rocky planet, let alone one that supports life.

Continue reading “How We Get Planets from Clumping Dust”

This Planet is Way Too Big for its Star

This artist's illustration shows what the star LHS 3145 might look like from the surface of its planet, LHS 314b. Image Credit: Penn State / Penn State. Creative Commons

Scientists love outliers. Outliers are nature’s way of telling us what its boundaries are and where its limits lie. Rather than being upset when an outlier disrupts their understanding, scientists feed on the curiosity that outliers inspire.

It’s true in the case of a new discovery of a massive planet orbiting a small star. That goes against our understanding of how planets form, meaning our planet-formation model needs an update.

Continue reading “This Planet is Way Too Big for its Star”

JWST Reveals Protoplanetary Disks in a Nearby Star Cluster

This composite image contains X-ray data from NASA’s Chandra X-ray Observatory and the ROSAT telescope (purple), infrared data from NASA’s Spitzer Space Telescope (orange), and optical data from the SuperCosmos Sky Survey (blue) made by the United Kingdom Infrared Telescope. Located in our galaxy about 5,500 light years from Earth, NGC 6357 is actually a “cluster of clusters,” containing at least three clusters of young stars, including many hot, massive, luminous stars. The X-rays from Chandra and ROSAT reveal hundreds of point sources, which are the young stars in NGC 6357, as well as diffuse X-ray emission from hot gas
Composite images of NGC6357 (Credit : NASA)

The Orion Nebula is a favourite among stargazers, certainly one of mine. It’s a giant stellar nebula out of which, hot young stars are forming. Telescopically to the eye it appears as a grey/green haze of wonderment but cameras reveal the true glory of these star forming regions. The Sun was once part of such an object and astronomers have been probing their secrets for decades. Now, a new paper presents the results from a detailed study from the James Webb Space Telescope (JWST) that has been exploring planet forming disks around stars in the Lobster Nebula.

Continue reading “JWST Reveals Protoplanetary Disks in a Nearby Star Cluster”

JWST Searches for Planets in the Fomalhaut System

This image shows Fomalhaut, the star around which the newly discovered planet orbits. Fomalhaut is much hotter than our Sun, 15 times as bright, and lies 25 light-years from Earth. It is blazing through hydrogen at such a furious rate that it will burn out in only one billion years, 10% the lifespan of our star. The field of view is 2.7 x 2.9 degrees.

The Fomalhaut system is nearby in astronomical terms, and it’s also one of the brightest stars in the night sky. That means astronomers have studied it intensely over the years. Now that we have the powerful James Webb Space Telescope the observations have intensified.

The Fomalhaut system has a confounding and complex dusty disk, including a dusty blob. The blob has been the subject of an ongoing debate in astronomy. Can the JWST see through its complexity and find answers to the systems unanswered questions?

Continue reading “JWST Searches for Planets in the Fomalhaut System”

Seeing the Moment Planets Start to Form

ALMA captured this high-resolution image of the protoplanetary disk surrounding DG Taurus at a 1.3 mm wavelength. The young star is still embedded in its disk, and the smooth appearance, absent of ring-like structures, indicates a phase shortly before planets form. Credit: ALMA (ESO/NAOJ/NRAO), S. Ohashi, et al.

Nature makes few duplicates, and planets are as distinct from one another as snowflakes are. But planets all start out in the same circumstances: the whirling disks of material surrounding young stars. ALMA’s made great progress imaging these disks and the telltale gaps excavated by young, still-forming planets.

But new images from ALMA (Atacama Large Millimeter/submillimeter Array) show a star and disk so young that there are no telltale gaps in the disk. Is this the moment that planets start to form?

Continue reading “Seeing the Moment Planets Start to Form”

Machine Learning is a Powerful Tool When Searching for Exoplanets

Three young planets in orbit around an infant star known as HD 163296 Credit: NRAO/AUI/NSF; S. Dagnello

Astronomy has entered the era of big data, where astronomers find themselves inundated with information thanks to cutting-edge instruments and data-sharing techniques. Facilities like the Vera Rubin Observatory (VRO) are collecting about 20 terabytes (TB) of data on a daily basis. Others, like the Thirty-Meter Telescope (TMT), are expected to gather up to 90 TB once operational. As a result, astronomers are dealing with 100 to 200 Petabytes of data every year, and astronomy is expected to reach the “exabyte era” before long.

In response, observatories have been crowdsourcing solutions and making their data open-access so citizen scientists can assist with the time-consuming analysis process. In addition, astronomers have been increasingly turning to machine learning algorithms to help them identify objects of interest (OI) in the Universe. In a recent study, a team led by the University of Georgia revealed how artificial intelligence could distinguish between false positives and exoplanet candidates simultaneously, making the job of exoplanet hunters that much easier.

Continue reading “Machine Learning is a Powerful Tool When Searching for Exoplanets”

Jupiter is up to 9% Rock and Metal, Which Means it Ate a lot of Planets in its Youth

This image of Jupiter's turbulent atmosphere was taken by NASA's Juno spacecraft on December 30, 2020. Image Credit: NASA/JPL-Caltech/SwRI/MSSS

Jupiter is composed almost entirely of hydrogen and helium. The amounts of each closely conform to the theoretical quantities in the primordial solar nebula. But it also contains other heavier elements, which astronomers call metals. Even though metals are a small component of Jupiter, their presence and distribution tell astronomers a lot.

According to a new study, Jupiter’s metal content and distribution mean that the planet ate a lot of rocky planetesimals in its youth.

Continue reading “Jupiter is up to 9% Rock and Metal, Which Means it Ate a lot of Planets in its Youth”

We’ve Now Seen Planet-Forming Disks Around Hundreds of Young Stars. What Do They Tell Us?

ALMA's high-resolution images of nearby protoplanetary disks, which are results of the Disk Substructures at High Angular Resolution Project (DSHARP). The observatory is often used to look for planet birth clouds like these and the one around HD 169142. Credit: ALMA (ESO/NAOJ/NRAO), S. Andrews et al.; NRAO/AUI/NSF, S. Dagnello
ALMA's high-resolution images of nearby protoplanetary disks, which are results of the Disk Substructures at High Angular Resolution Project (DSHARP). The observatory is often used to look for planet birth clouds like these and the one around HD 169142. Credit: ALMA (ESO/NAOJ/NRAO), S. Andrews et al.; NRAO/AUI/NSF, S. Dagnello

Is our Solar System comparable to other solar systems? What do other systems look like? We know from exoplanet studies that many other systems have hot Jupiters, massive gas giants that orbit extremely close to their stars. Is that normal, and our Solar System is the outlier?

One way of addressing these questions is to study the planet-forming disks around young stars to see how they evolve. But studying a large sample of these systems is the only way to get an answer. So that’s what a group of astronomers did when they surveyed 873 protoplanetary disks.

Continue reading “We’ve Now Seen Planet-Forming Disks Around Hundreds of Young Stars. What Do They Tell Us?”