What is CERN?

Here’s another great video from Sixty Symbols featuring professor Ed Copeland giving his entertaining description of CERN, the “Mecca for physicists” and home of the famous Large Hadron Collider. (Hopefully it will tide you over until the latest news is presented on July 4 regarding the ongoing hunt for the ever-elusive Higgs field!) Enjoy.

“On each of these experiments there are something like 3,000 physicists involved. So they’re not all here at the same time, of course… the cafeteria would be a nightmare if that was the case.”

– Prof. Ed Copeland

Brilliant.

Euclid and the Geometry of the Dark Universe

Artist’s impression of Euclid Credit: ESA/C. Carreau

Euclid, an exciting new mission to map the geometry, distribution and evolution of dark energy and dark matter has just been formally adopted by ESA as part of their Cosmic Vision 2015-2025 progamme. Named after Euclid of Alexandria, the “Father of Geometry”, it will accurately measure the accelerated expansion of the Universe, bringing together one of the largest collaborations of astronomers, engineers and scientists in an attempt to answer one of the most important questions in cosmology: why is the expansion of the Universe accelerating, instead of slowing down due to the gravitational attraction of all the matter it contains?

In 2007 the Hubble Space Telescope produced a 3D map of dark matter that covered just over 2 square degrees of sky, while in March this year the Baryon Oscillation Spectroscopic Survey (BOSS) measured the precise distance to just over a quarter of a million galaxies. Working in the visible and near-infrared wavelengths, Euclid will precisely measure around two billion galaxies and galaxy clusters in 3 dimensions in a wide extragalactic survey covering 15,000 square degrees (over a third of the sky) plus a deep survey out to redshifts of ~2, covering an area of 40 square degrees, the 3-D galaxy maps produced will trace dark energy’s influence over 10 billion years of cosmic history, covering the period when dark energy accelerated the expansion of the Universe.

The mission was selected last October but now that it has been formally adopted by ESA, invitations to tender will be released, with Astrium and Thales Alenia Space, Europe’s two main space companies expected to bid. Hoping to launch in 2020, Euclid will involve contributions from 11 European space agencies as well as NASA while nearly 1,000 scientists from 100 institutes form the Euclid Consortium building the instruments and participating in the scientific harvest of the mission. It is expected to cost around 800m euros ($1,000m £640m) to build, equip, launch and operate over its nominal 6 year mission lifetime, where it will orbit the second Sun-Earth Lagrange point (L2 in the image below) It will have a mass of around 2100 kg, and measure about 4.5 metres tall by 3.1 metres. It will carry a 1.2 m Korsch telescope, a near infrared camera/spectrometer and one of the largest optical digital cameras ever flown in space.

Sun Earth Lagrange Points Credit: Xander89 via Wikimedia Commons

Dark matter represents 20% of the universe and dark energy 76%. Euclid will use two techniques to map the dark matter and measure dark energy. Weak gravitational lensing measures the distortions of light from distant galaxies due to the mass of dark matter, this requires extremely high image quality to suppress or calibrate-out image distortions in order to measure the true distortions by gravity. Euclid’s camera will produce images 100 times larger than those produced by Hubble, minimizing the need to stitch images together. Baryonic acoustic oscillations, wiggle patterns, imprinted in the clustering of galaxies, will provide a standard ruler to measure dark energy and the expansion in the Universe. This involves the determination of the redshifts of galaxies to better than 0.1%. It is also hoped that later in the mission, supernovas may be used as markers to measure the expansion rate of the Universe.

Find out more about Euclid and other Cosmic Vision missions at ESA Science

Lead image caption: Artist’s-impression-of-Euclid-Credit-ESA-C.-Carreau

Second image caption: Sun Earth Lagrange Points Credit: Xander89 via Wikimedia Commons

Could ‘Mirror Neutrons’ Account for Unobservable Dark Matter?

Could mirror universes or parallel worlds account for dark matter — the ‘missing’ matter in the Universe? In what seems to be mixing of science and science fiction, a new paper by a team of theoretical physicists hypothesizes the existence of mirror particles as a possible candidate for dark matter. An anomaly observed in the behavior of ordinary particles that appear to oscillate in and out of existence could be from a “hypothetical parallel world consisting of mirror particles,” says a press release from Springer. “Each neutron would have the ability to transition into its invisible mirror twin, and back, oscillating from one world to the other.”

Theoretical physicists Zurab Berezhiani and Fabrizio Nesti from the University of l’Aquila, Italy, reanalyzed the experimental data obtained by the research group of Anatoly Serebrov at the Institut Laue-Langevin, France, which showed that the loss rate of very slow free neutrons appeared to depend on the direction and strength of the magnetic field applied.

This type of field could be created by mirror particles floating around in the galaxy as dark matter, according to the new paper. Hypothetically, the Earth could capture the mirror matter via very weak interactions between ordinary particles and those from parallel worlds.

Berezhiani and Nesti’s abstract:

Present experiments do not exclude that the neutron transforms into some invisible degenerate twin, so called mirror neutron, with an appreciable probability. These transitions are actively studied by monitoring neutron losses in ultra-cold neutron traps, where they can be revealed by their magnetic field dependence. In this work we reanalyze the experimental data acquired by the group of A.P. Serebrov at Institute Laue-Langevin, and find a dependence at more than 5 sigma away from the null hypothesis…. If confirmed by future experiments, this will have a number of deepest consequences in particle physics and astrophysics.

The oscillations between the parallel worlds could occur within a timescale of a few seconds, the team says.

“Each neutron would have the ability to transition into its invisible mirror twin, and back, oscillating from one world to the other,” the authors say.

This isn’t the first time the existence of mirror matter has been suggested and has been predicted to be sensitive to the presence of magnetic field such as Earth’s.

“The discovery of a parallel world via … oscillation and of a mirror magnetic back-ground at the Earth, striking in itself, would give crucial information on the accumulation the of dark matter in the solar system and in the Earth, due to its interaction with normal matter, with far reaching implications for physics of the sun and even for geophysics,” the team writes in their paper.

Lead image caption: Artists concept of dark matter in the Universe. Credit: NASA

Sources: arXiv, PhysOrg, SciNews

Dark Matter Makes a Comeback

The Milky Way an moonrise over ESO's Paranal observatory (ESO/H.H. Heyer)

[/caption]

Recent reports of dark matter’s demise may be greatly exaggerated, according to a new paper from researchers at the Institute for Advanced Study.

Astronomers with the European Southern Observatory announced in April a surprising lack of dark matter in the galaxy within the vicinity of our solar system.

The ESO team, led by Christian Moni Bidin of the Universidad de Concepción in Chile, mapped over 400 stars near our Sun, spanning a region approximately 13,000 light-years in radius. Their report identified a quantity of material that matched what could be directly observed: stars, gas, and dust… but no dark matter.

“Our calculations show that it should have shown up very clearly in our measurements,” Bidin had stated, “but it was just not there!”

But other scientists were not so sure about some assumptions the ESO team had based their calculations upon.

Researchers Jo Bovy and Scott Tremaine from the Institute for Advanced Study in Princeton, NJ, have submitted a paper claiming that the results reported by Moni Biden et al are “incorrect”, and based on an “invalid assumption” of the motions of stars within — and above — the plane of the galaxy.

(Read: Astronomers Witness a Web of Dark Matter)

“The main error is that they assume that the mean azimuthal (or rotational) velocity of their tracer population is independent of Galactocentric cylindrical radius at all heights,” Bovy and Tremaine state in their paper. “This assumption is not supported by the data, which instead imply only that the circular speed is independent of radius in the mid-plane.”

The researchers point out the stars within the local neighborhood move slower than the average velocity assumed by the ESO team, in a behavior called asymmetric drift. This lag varies with a cluster’s position within the galaxy, but, according to Bovy and Tremaine, “this variation cannot be measured for the sample [used by Moni Biden’s team] as the data do not span a large enough range.”

When the IAS researchers took Moni Biden’s observations but replaced the ESO team’s “invalid” assumptions on star movement within and above the galactic plane with their own “data-driven” ones, the dark matter reappeared.

Artist's impression of dark matter surrounding the Milky Way. (ESO/L. Calçada)

“Our analysis shows that the locally measured density of dark matter is consistent with that extrapolated from halo models constrained at Galactocentric distances,” Bovy and Tremaine report.

As such, the dark matter that was thought to be there, is there. (According to the math, that is.)

And, the two researchers add, it’s not only there but it’s there in denser amounts than average — at least in the area around our Sun.

“The halo density at the Sun, which is the relevant quantity for direct dark matter detection experiments, is likely to be larger because of gravitational focusing by the disk,” Bovy and Tremaine note.

When they factored in their data-driven calculations on stellar velocities and the movement of the halo of non-baryonic material that is thought to envelop the Milky Way, they found that “the dark matter density in the mid-plane is enhanced… by about 20%.”

So rather than a “serious blow” to the existence of dark matter, the findings by Bovy and Tremaine — as well as Moni Biden and his team — may have not only found dark matter, but given us 20% more!

Now that’s a good value.

Read the IAS team’s full paper here.

(Tip of the non-baryonic hat to Christopher Savage, post-doctorate researcher at the Oskar Klein Centre for Cosmoparticle Physics at Stockholm University for the heads up on the paper.)

How Small Are Atoms?

No fruits were harmed in the making of this video.

Here on Universe Today we often discuss things that exist on the atomic and sub-atmonic scale. Even though astronomy is concerned with very big things that happen over very, very large distances and time spans, the reality is that our Universe is driven by events occurring on the tiny atomic scale.

We all know atoms are really small (and the particles inside them are even smaller.) But… how small are they, really? To help answer that question, here’s a neat little animation from TEDEducation, presented by Jonathan Bergmann and Cognitive Media.

(That’s one big grapefruit!)

[/caption]

‘Seeing’ Cosmic Rays in Space

The Apollo Light Flash Moving Emulsion Detector (ALFMED), an experiment to record of incidents cosmic ray particles hitting astronauts. Credit: NASA

Astronauts have long reported the experience of seeing flashes while they are in space, even when their eyes are closed. Neil Armstrong and Buzz Aldrin both reported these flashes during the Apollo 11 mission, and similar reports during the Apollo 12 and 13 missions led to subsequent Apollo missions including experiments specifically looking at this strange phenomenon. These experiments involved blindfolding crewmembers and recording their comments during designated observation sessions, and later missions had a special device, the Apollo Light Flash Moving Emulsion Detector (ALFMED), which was worn by the astronauts during dark periods to record of incidents of cosmic ray hits.

It was determined the astronauts were ‘seeing’ cosmic rays zipping through their eyeballs. Cosmic rays are high-energy charged subatomic particles whose origins are not yet known. Fortunately, cosmic rays passing through Earth are usually absorbed by our atmosphere. But astronauts outside the atmosphere can find themselves “seeing things that aren’t there,” wrote current International Space Station astronaut Don Pettit, who told about his experience of seeing these flashes on his blog:

“In space I see things that are not there. Flashes in my eyes, like luminous dancing fairies, give a subtle display of light that is easy to overlook when I’m consumed by normal tasks. But in the dark confines of my sleep station, with the droopy eyelids of pending sleep, I see the flashing fairies. As I drift off, I wonder how many can dance on the head of an orbital pin.”

In a report on the Apollo experiment, astronauts described the types of flashes they saw in three ways: the ‘spot’, the ‘streak’, and the ‘cloud’; and all but one described the flashes as ‘white’ or ‘colorless.’ One crewmember, Apollo 15 Commander David Scott, described one flash as “blue with a white cast, like a blue diamond.”

Pettit described the physics/biology of what takes place:

“When a cosmic ray happens to pass through the retina it causes the rods and cones to fire, and you perceive a flash of light that is really not there. The triggered cells are localized around the spot where the cosmic ray passes, so the flash has some structure. A perpendicular ray appears as a fuzzy dot. A ray at an angle appears as a segmented line. Sometimes the tracks have side branches, giving the impression of an electric spark. The retina functions as a miniature Wilson cloud chamber where the recording of a cosmic ray is displayed by a trail left in its wake.”

Pettit said that the rate or frequency at which these flashes are seen varies with orbital position.

“There is a radiation hot spot in orbit, a place where the flux of cosmic rays is 10 to 100 times greater than the rest of the orbital path. Situated southeast of Argentina, this region (called the South Atlantic Anomaly) extends about halfway across the Atlantic Ocean. As we pass through this region, eye flashes will increase from one or two every 10 minutes to several per minute.

A cosmic ray hit on a camera appears as a segmented line in the image. Credit: NASA/Don Pettit..

During the Apollo missions, astronauts saw these flashes after their eyes had become dark-adapted. When it was dark, they reported a flash every 2.9 minutes on average. Only one Apollo crewmember involved in the experiments did not report seeing the phenomenon, Apollo 16’s Command Module Pilot Ken Mattingly, who stated that he had poor night vision.

These cosmic rays don’t just hit people, but things in space, too, and sometimes cause problems. Pettit wrote:

“Free from the protection offered by the atmosphere, cosmic rays bombard us within Space Station, penetrating the hull almost as if it was not there. They zap everything inside, causing such mischief as locking up our laptop computers and knocking pixels out of whack in our cameras. The computers recover with a reboot; the cameras suffer permanent damage. After about a year, the images they produce look like they are covered with electronic snow. Cosmic rays contribute most of the radiation dose received by Space Station crews. We have defined lifetime limits, after which you fly a desk for the rest of your career. No one has reached that dose level yet.”

The Phantom Torso experiment, AKA, Fred. Credit: NASA

There are experiments on board the ISS to monitor how much radiation the crew is receiving. One experiment is the Phantom Torso, a mummy-looking mock-up of the human body which determines the distribution of radiation doses inside the human body at various tissues and organs.

There’s also the Alpha Magnetic Spectrometer experiment, a particle physics experiment module that is mounted on the ISS. It is designed to search for various types of unusual matter by measuring cosmic rays, and hopefully will also tell us more about the origins of both those crazy flashes seen in space, and also the origins of the Universe.

A tall order!

The Case of the Missing Dark Matter

Artist's impression of dark matter surrounding the Milky Way. (ESO/L. Calçada)

[/caption]

A survey of the galactic region around our solar system by the European Southern Observatory (ESO) has turned up a surprising lack of dark matter, making its alleged existence even more of a mystery.

The 2.2m MPG-ESO telescope, used in the survey. (ESO/H.H.Heyer)

Dark matter is an invisible substance that is suspected to exist in large quantity around galaxies, lending mass but emitting no radiation. The only evidence for it comes from its gravitational effect on the material around it… up to now, dark matter itself has not been directly detected. Regardless, it has been estimated to make up 80% of all the mass in the Universe.

A team of astronomers at ESO’s La Silla Observatory in Chile has mapped the region around over 400 stars near the Sun, some of which were over 13,000 light-years distant. What they found was a quantity of material that coincided with what was observable: stars, gas, and dust… but no dark matter.

“The amount of mass that we derive matches very well with what we see — stars, dust and gas — in the region around the Sun,” said team leader Christian Moni Bidin of the Universidad de Concepción in Chile. “But this leaves no room for the extra material — dark matter — that we were expecting. Our calculations show that it should have shown up very clearly in our measurements. But it was just not there!”

Based on the team’s results, the dark matter halos thought to envelop galaxies would have to have “unusual” shapes — making their actual existence highly improbable.

Still, something is causing matter and radiation in the Universe to behave in a way that belies its visible mass. If it’s not dark matter, then what is it?

“Despite the new results, the Milky Way certainly rotates much faster than the visible matter alone can account for,” Bidin said. “So, if dark matter is not present where we expected it, a new solution for the missing mass problem must be found.

“Our results contradict the currently accepted models. The mystery of dark matter has just became even more mysterious.”

Read the release on the ESO site here.

Finding Out What Dark Matter Is – And Isn’t

This dwarf spheroidal galaxy is a satellite of our Milky Way and is one of 10 used in Fermi's dark matter search. (Credit: ESO/Digital Sky Survey 2)


Astronomers using NASA’s Fermi Gamma-Ray Space Telescope have been looking for evidence of suspected types of dark matter particles within faint dwarf galaxies near the Milky Way — relatively “boring” galaxies that have little activity but are known to contain large amounts of dark matter. The results?

These aren’t the particles we’re looking for.

80% of the material in the physical Universe is thought to be made of dark matter — matter that has mass and gravity but does not emit electromagnetic energy (and is thus invisible). Its gravitational effects can be seen, particularly in clouds surrounding galaxies where it is suspected to reside in large amounts. Dark matter can affect the motions of stars, galaxies and even entire clusters of galaxies… but when it all comes down to it, scientists still don’t really know exactly what dark matter is.

Possible candidates for dark matter are subatomic particles called WIMPs (Weakly Interacting Massive Particles). WIMPs don’t absorb or emit light and don’t interact with other particles, but whenever they interact with each other they annihilate and emit gamma rays.

If dark matter is composed of WIMPs, and the dwarf galaxies orbiting the Milky Way do contain large amounts of dark matter, then any gamma rays the WIMPs might emit could be detected by NASA’s Fermi Gamma-Ray Space Telescope.

After all, that’s what Fermi does.

Ten such galaxies — called dwarf spheroids — were observed by Fermi’s Large-Area Telescope (LAT) over a two-year period. The international team saw no gamma rays within the range expected from annihilating WIMPs were discovered, thus narrowing down the possibilities of what dark matter is.

“In effect, the Fermi LAT analysis compresses the theoretical box where these particles can hide,” said Jennifer Siegal-Gaskins, a physicist at the California Institute of Technology in Pasadena and a member of the Fermi LAT Collaboration.

[/caption]

So rather than a “failed experiment”, such non-detection means that for the first time researchers can be scientifically sure that WIMP candidates within a specific range of masses and interaction rates cannot be dark matter.

(Sometimes science is about knowing what not to look for.)

A paper detailing the team’s results appeared in the Dec. 9, 2011, issue of Physical Review Letters. Read more on the Fermi mission page here.

Neutrinos Obey The Speed Limit, After All

Inside the LHC's underground tunnel. (Credit: CERN)

[/caption]

Neutrinos have been cleared of allegations of speeding, according to an announcement issued today by CERN and the ICARUS experiment at Italy’s Gran Sasso National Laboratory. Turns out they travel exactly as fast as they should, and not a nanosecond more.

The initial announcement in September 2011 from the OPERA experiment noted a discrepancy in the measured speed of neutrinos traveling in a beam sent to the detectors at Gran Sasso from CERN in Geneva. If their measurements were correct, it would have meant that the neutrinos had arrived 60 nanoseconds faster than the speed of light allows. This, understandably, set the world of physics a bit on edge as it would effectually crumble the foundations of the Standard Model of physics.

As other facilities set out to duplicate the results, further investigations by the OPERA team indicated that the speed anomaly may have been the result of bad fiberoptic wiring between the detectors and the GPS computers, although this was never officially confirmed to be the exact cause.

Now, a a statement from CERN reports the results of the ICARUS experiment — Imaging Cosmic and Rare Underground Signals — which is stationed at the same facilities as OPERA. The ICARUS data, in measuring neutrinos from last year’s beams, show no speed anomaly — further evidence that OPERA’s measurement was very likely a result of error.

The full release states:

__________________

The ICARUS experiment at the Italian Gran Sasso laboratory has today reported a new measurement of the time of flight of neutrinos from CERN to Gran Sasso. The ICARUS measurement, using last year’s short pulsed beam from CERN, indicates that the neutrinos do not exceed the speed of light on their journey between the two laboratories. This is at odds with the initial measurement reported by OPERA last September.

What neutrinos look like to ICARUS. (LNGS)

“The evidence is beginning to point towards the OPERA result being an artefact of the measurement,” said CERN Research Director Sergio Bertolucci, “but it’s important to be rigorous, and the Gran Sasso experiments, BOREXINO, ICARUS, LVD and OPERA will be making new measurements with pulsed beams from CERN in May to give us the final verdict. In addition, cross-checks are underway at Gran Sasso to compare the timings of cosmic ray particles between the two experiments, OPERA and LVD. Whatever the result, the OPERA experiment has behaved with perfect scientific integrity in opening their measurement to broad scrutiny, and inviting independent measurements. This is how science works.” 

The ICARUS experiment has independent timing from OPERA and measured seven neutrinos in the beam from CERN last year. These all arrived in a time consistent with the speed of light.

“The ICARUS experiment has provided an important cross check of the anomalous result reports from OPERA last year,” said Carlo Rubbia, Nobel Prize winner and spokesperson of the ICARUS experiment. “ICARUS measures the neutrino’s velocity to be no faster than the speed of light. These are difficult and sensitive measurements to make and they underline the importance of the scientific process. The ICARUS Liquid Argon Time Projection Chamber is a novel detector which allows an accurate reconstruction of the neutrino interactions comparable with the old bubble chambers with fully electronics acquisition systems. The fast associated scintillation pulse provides the precise  timing of each event, and has been exploited for the neutrino time-of-flight measurement. This technique is now recognized world wide as the most appropriate for future large volume neutrino detectors”.

__________________

An important note is that, although further research points more and more to neutrinos behaving as expected, the OPERA team had proceeded in a scientific manner right up to and including the announcement of their findings.

“Whatever the result, the OPERA experiment has behaved with perfect scientific integrity in opening their measurement to broad scrutiny, and inviting independent measurements,” the ICARUS team reported. “This is how science works.”

See more news from CERN here.

ALPHA Closes in on Antimatter

What matter and antimatter might look like annihilating one another. Credit: NASA/CXC/M. Weiss

[/caption]

We live in a universe made of matter. But at the moment of the Big Bang, matter and antimatter existed in equal amounts. That antimatter has all but disappeared suggests that nature, for some reason, has a strong preference for matter. Physicists want to know why matter has replaced its antimatter twin, and this week the ALPHA collaboration at CERN got a step closer to unraveling the mystery. 

ALPHA, an international collaborative experiment established in 2005, was designed to trap and measure antihydrogen particles with a specially designed experiment. It’s picking up where its antimatter-searching predecessor, ATHENA, left off. The focus is on antihydrogen because hydrogen is the most prevalent element in the universe and its structure is extremely well known to scientists.

Each hydrogen atom has one electron orbiting its nucleus. Firing light at the atoms excites the electron, causing it to jump into an orbit further away from the nucleus before it relaxes and returns to its resting orbit emitting light in the process. The frequency distribution of this emitted light is known; it has been precisely measured and, in our universe made of matter, is unique to hydrogen.

An illustration of hydrogen and antihydrogen. Credit: USAF

Basic physics dictates that hydrogen’s antimatter twin, antihydrogen, should be equally recognizable by having an identical spectrum. That is, if everything we know about particle physics is right. Capturing and measuring antihydrogen’s spectrum is the main goal of the ALPHA group.

ALPHA has taken the first modest measurements of antihydrogen. In the ALPHA apparatus, antihydrogen is trapped by an arrangement of magnets that affect the magnetic field of the atoms. Microwaves tuned to a specific frequency aimed on these antihydrogen atoms flips their magnetic orientation, liberating them. The freed antihydrogen meets hydrogen as it escapes and the two annihilate one another, leaving a well known pattern in particle detectors surrounding the apparatus.

The apparatus captured evidence of the electron jumping orbits in an antihydrogen atom after microwave radiation changed its internal state. The result further proves the validity of ALPHA’s approach, demonstrating that the apparatus has enough control and sensitivity to successfully carry out the experiment it was designed for. In the future, ALPHA will focus on improving the precision of its microwave measurements to uncover the antihydrogen spectrum using lasers.

The exciting results were hard to come by as antihydrogen does not exist in nature. It’s made in the ALPHA apparatus from antiprotons that are themselves made in the Antiproton Decelerator and positrons from a radioactive source. And it has to have a low enough energy level to stay trapped for measurements. But it’s working, and it just might give physicists the key they need to understand the mystery of the early universe.

Source: CERN