The Sun Probably Lost a Binary Twin Billions of Years Ago

For us Earthlings, life under a single Sun is just the way it is. But with the development of modern astronomy, we’ve become aware of the fact that the Universe is filled with binary and even triple star systems. Hence, if life does exist on planets beyond our Solar System, much of it could be accustomed to growing up under two or even three suns. For centuries, astronomers have wondered why this difference exists and how star systems came to be.

Whereas some astronomers argue that individual stars formed and acquired companions over time, others have suggested that systems began with multiple stars and lost their companions over time. According to a new study by a team from UC Berkeley and the Harvard-Smithsonian Center for Astrophysics (CfA), it appears that the Solar System (and other Sun-like stars) may have started out as binary system billions of years ago.

This study, titled “Embedded Binaries and Their Dense Cores“, was recently accepted for publication in the Monthly Notices of the Royal Astronomical Society. In it, Sarah I. Sadavoy – a radio astronomer from the Max Planck Institute for Astronomy and the CfA – and Steven W. Stahler (a theoretical physicist from UC Berkeley) explain how a radio surveys of a star nursery led them to conclude that most Sun-like stars began as binaries.

The dark molecular cloud, Barnard 68, is a stellar nursery that can only be studied using radio astronomy. Credit: FORS Team, 8.2-meter VLT Antu, ESO

They began by examining the results of the first radio survey of the giant molecular cloud located about 600 light-years from Earth in the Perseus constellation – aka. the Perseus Molecular Cloud. This survey, known as the VLA/ALMA Nascent Disk and Multiplicity (VANDAM) survey, relied the Very Large Array in New Mexico and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile to conduct the first survey of the young stars (<4 million years old) in this star-forming region.

For several decades, astronomers have known that stars are born inside “stellar nurseries”, which are the dense cores that exist within immense clouds of dust and cold, molecular hydrogen. These clouds look like holes in the star field when viewed through an optical telescope, thanks to all the dust grains that obscure light coming from the stars forming within them and from background stars.

Radio surveys are the only way to probe these star-forming regions, since the dust grains emit radio transmissions and also do not block them. For years, Stahler has been attempting to get radio astronomers to examine molecular clouds in the hope of gathering information on the formation of young stars inside them. To this end, he approached Sarah Sadavoy – a member of the VANDAM team – and proposed a collaboration.

The two began their work together by conducting new observations of both single and binary stars within the dense core regions of the Perseus cloud. As Sadavoy explained in a Berkeley News press release, the duo were looking for clues as to whether young stars formed as individuals or in pairs:

“The idea that many stars form with a companion has been suggested before, but the question is: how many? Based on our simple model, we say that nearly all stars form with a companion. The Perseus cloud is generally considered a typical low-mass star-forming region, but our model needs to be checked in other clouds.”

Infrared image from the Hubble Space Telescope, showing a bright, fan-shaped object (lower right quadrant) thought to be a binary star that emits light pulses as the two stars interact. Credit: NASA/ESA/ J. Muzerolle (STScI)

Their observations of the Perseus cloud revealed a series of Class 0 and Class I stars – those that are <500,000 old and 500,000 to 1 million years old, respectively – that were surrounded by egg-shaped cocoons. These observations were then combined with the results from VANDAM and other surveys of star forming regions – including the Gould Belt Survey and data gathered by SCUBA-2 instrument on the James Clerk Maxwell Telescope in Hawaii.

From this, they created a census of stars within the Perseus cloud, which included 55 young stars in 24 multiple-star systems (all but five of them binary) and 45 single-star systems. What they observed was that all of the widely separated binary systems – separated by more than 500 AU – were very young systems containing two Class 0 stars  that tended to be aligned with the long axis of their egg-shaped dense cores.

Meanwhile, the slightly older Class I binary stars were closer together (separated by about 200 AU) and did not have the same tendency as far as their alignment was concerned. From this, the study’s authors began mathematically modelling multiple scenarios to explain this distribution, and concluded that all stars with masses comparable to our Sun start off as wide Class 0 binaries. They further concluded that 60% of these split up over time while the rest shrink to form tight binaries.

“As the egg contracts, the densest part of the egg will be toward the middle, and that forms two concentrations of density along the middle axis,” said Stahler. “These centers of higher density at some point collapse in on themselves because of their self-gravity to form Class 0 stars. “Within our picture, single low-mass, sunlike stars are not primordial. They are the result of the breakup of binaries. ”

The two brightest stars of the Centaurus constellation, the binary star system of Alpha Centauri. Credit: Wikipedia Commons/Skatebiker

Findings of this nature have never before been seen or tested. They also imply that each dense core within a stellar nursery (i.e. the egg-shaped cocoons, which typically comprise a few solar masses) converts twice as much material into stars as was previously thought. As Stahler remarked:

“The key here is that no one looked before in a systematic way at the relation of real young stars to the clouds that spawn them. Our work is a step forward in understanding both how binaries form and also the role that binaries play in early stellar evolution. We now believe that most stars, which are quite similar to our own sun, form as binaries. I think we have the strongest evidence to date for such an assertion.”

This new data could also be the start of a new trend, where astronomers rely on radio telescopes to examine dense star-forming regions with the hopes of witnessing more in the way of stellar formations. With the recent upgrades to the VLA and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, and the ongoing data provided by the SCUBA-2 survey in Hawaii, these studies may be coming sooner other than later.

Another interesting implication of the study has to do with something known as the “Nemesis hypothesis”. In the past, astronomers have conjectured that a companion star named “Nemesis” existed within our Solar System. This star was so-named because the theory held that it was responsible for kicking the asteroid which caused the extinction of the dinosaurs into Earth’s orbit. Alas, all attempts to find Nemesis ended in failure.

Artist’s impression of the binary star system of Sirius, a white dwarf star in orbit around Sirius (a white supergiant). Credit: NASA, ESA and G. Bacon (STScI)

As Steven Stahler indicated, these findings could be interpreted as a new take on the Nemesis theory:

“We are saying, yes, there probably was a Nemesis, a long time ago. We ran a series of statistical models to see if we could account for the relative populations of young single stars and binaries of all separations in the Perseus molecular cloud, and the only model that could reproduce the data was one in which all stars form initially as wide binaries. These systems then either shrink or break apart within a million years.”

So while their results do not point towards a star being around for the extinction of the dinosaurs, it is possible (and even highly plausible) that billions of years ago, the Solar planets orbited around two stars. One can only imagine what implications this could have for the early history of the Solar System and how it might have affected planetary formation. But that will be the subject of future studies, no doubt!

Further Reading: Berkeley News, arXiv

Messier 34 – the NGC 1039 Open Star Cluster

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the Triangulum Galaxy, also known as Messier 33. Enjoy!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects is known as Messier 34, an open star cluster located in the northern Perseus constellation. Located at a distance of about 1,500 light years from Earth, it is one of the closest Messier objects to Earth, and is home to an estimated 400 stars. It is also bright enough to be seen with the naked eye or binoculars, where light conditions permit.

What You Are Looking At:

This cluster of stars started its journey off together through our galaxy some 180 million years ago as part of the “Local Association”… groups of stars like the Pleiades, Alpha Persei Cluster and the Delta Lyrae Cluster that share a common origin, but have become gravitationally unbound and are still moving together through space. We know the stars are related by their common movement and ages, but what else do we know about them?

The core region of the Messier 34 open star cluster. Credit: Wikisky

Well, one thing we do know is that out of the 354 stars in the region survey, 89 of them are actual cluster members and that all six of the visual binaries and three of the four known Ap stars are members of the cluster. There’s even a giant among them! But like almost all stars out there, we know they usually aren’t singles and actually have companions. As Theodore Simon wrote in his 2000 study regarding NGC 1039 and NGC 3532:

“Roughly half the sources detected in both images have likely optical counterparts from earlier ground-based surveys. The remainder are either prospective cluster members or foreground/background stars, which can be decided only through additional photometry, spectroscopy, and proper-motion studies. There is some indication (at the 98% confidence level) that solar-type stars may lack the extreme rotation and activity levels shown by those in the much younger Pleiades and alpha Persei clusters, but a detailed assessment of the coronal X-ray properties of these clusters must await more sensitive observations in the future. If confirmed, this finding could help to rule out the possibility that stellar dynamo activity and rotational braking are controlled by a rapidly spinning central core as stars pass through this phase of evolution from the Pleiades stage to that represented by the Hyades.”

If there’s companion stars to be discovered, what else might be in the field that we just can quite “see”? Try white dwarfs. As Kate Rubin (et al.) published in the May 2008 issue of the Astronomical Journal:

“We present the first detailed photometric and spectroscopic study of the white dwarfs (WDs) in the field of the ~225 Myr old (log ?cl = 8.35) open cluster NGC 1039 (M34) as part of the ongoing Lick-Arizona White Dwarf Survey. Using wide-field UBV imaging, we photometrically select 44 WD candidates in this field. We spectroscopically identify 19 of these objects as WDs; 17 are hydrogen-atmosphere DA WDs, one is a helium-atmosphere DB WD, and one is a cool DC WD that exhibits no detectable absorption lines. Of the 17 DAs, five are at the approximate distance modulus of the cluster. Another WD with a distance modulus 0.45 mag brighter than that of the cluster could be a double-degenerate binary cluster member, but is more likely to be a field WD. We place the five single cluster member WDs in the empirical initial-final mass relation and find that three of them lie very close to the previously derived linear relation; two have WD masses significantly below the relation. These outliers may have experienced some sort of enhanced mass loss or binary evolution; however, it is quite possible that these WDs are simply interlopers from the field WD population.”

Close-up image of M34 showing its white dwarf population, taken by the Sloan Digital Sky Survey. Credit: SDSS

While it sounds a little confusing, it’s all about how star clusters evolve. As David Soderblom wrote in a 2001 study:

“We analyze Keck Hires observations of rotation in F, G, and K dwarf members of the open cluster M34 (NGC 1039), which is 250 Myr old, and we compare them to the Pleiades, Hyades, and NGC 6475. The upper bound to rotation seen in M34 is about a factor of two lower than for the 100 Myr-old Pleiades, but most M34 stars are well below this upper bound, and it is the overall convergence in rotation rates that is most striking. A few K dwarfs in M34 are still rapid rotators, suggesting that they have undergone core-envelope decoupling, followed by replenishment of surface angular momentum from an internal reservoir. Our comparison of rotation in these clusters indicates that the time scale for the coupling of the envelope to the core must be close to 100 Myr if decoupling does, in fact, occur.”

History of Observation:

M34 was probably first found by Giovanni Batista Hodierna before 1654, and independently rediscovered by Charles Messier in on August 25, 1764. As he described it in his notes:

“I have determined the position of a cluster of small stars between the head of the Medusa and the left foot of Andromeda almost on the parallel of the star Gamma of that letter constellation. With an ordinary refractor of 3 feet, one distinguishes these stars; the cluster may have 15 minutes in extension. I have determined its position with regard to the star Beta in the head of the Medusa; its right ascension has been concluded at 36d 51′ 37″, and its declination as 41d 39′ 32″ north.”

Image of Messier 34 taken by the Two Micron All-Sky Survey (2MASS) of Messier 34 (also known as M34 or NGC 1039). Credit: 2MASS/UMass/IPAC-Caltech/NASA/NSF

Over the years, a great many historic observers would turn a telescope its way to examine it – also looking for more. Said Sir William Herschel: “A cluster of stars; with 120, I think it is accompanied with mottled light, like stars at a distance.” Yet very little more can be seen except for the fact that most of the stars seem to be arranged in pairs – the most notable being optical double in the center – h 1123 – which was cataloged by Sir John Herschel on December 23rd, 1831.

Charles Messier discovered it independently on August 25th, 1764, and included it in the Messier Catalog. As he wrote in the first edition of the catalog:

“In the same night of [August] 25 to 26, I have determined the position of a cluster of small stars between the head of the Medusa [Algol] & the left foot of Andromeda almost on the parallel of the star Gamma of that letter constellation. With an ordinary [non-achromatic] refractor of 3 feet [FL], one distinguishes these stars; the cluster may have 15 minutes in extension. I have determined its position with regard to the star Beta in the head of the Medusa; its right ascension has been concluded at 36d 51? 37?, & its declination as 41d 39? 32? north.”

But as always, it was Admiral William Henry Smyth who described the object with the most florid prose. As he wrote in his notes when observing the cluster in October 1837, he noted the following:

“A double star in a cluster, between the right foot of Andromeda and the head of Medusa; where a line from Polaris between Epsilon Cassiopeiae and Alpha Persei to within 2deg of the parallel of Algol, will meet it. A and B, 8th magnitudes, and both white. It is in a scattered but elegant group of stars from the 8th to the 13th degree of brightness, on a dark ground, and several of them form into coarse pairs. This was first seen and registered by Messier, in 1764, as a “mass of small stars;” and in 1783 was resolved by Sir W. Herschel with a seven-foot reflector: with the 20-foot he made it “a coarse cluster of large stars of different sizes.” By the method he applied to fathom the galaxy, he concluded the profundity of this object not to exceed the 144th order.”

The location of Messier 34 in the northern Perseus constellation. Credit: IAU and Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

Locating Messier 34:

M34 is easily found in binoculars about two fields of view northwest of Algol(Beta Persei). You will know when you have found this distinctive star cluster because “X” marks the spot! In a telescope finderscope, it will appear as a faint, hazy spot and will fully resolve to most average telescopes. Messier 34 makes an excellent target for moonlit nights or light polluted areas and will stand up well to less than perfect sky conditions.

It can even be seen unaided from ideal locations! Enjoy your observations!

And as always, we’ve included the quick facts on this Messier Object to help you get started:

Object Name: Messier 34
Alternative Designations: M34, NGC 1039
Object Type: Galactic Open Star Cluster
Constellation: Perseus
Right Ascension: 02 : 42.0 (h:m)
Declination: +42 : 47 (deg:m)
Distance: 1.4 (kly)
Visual Brightness: 5.5 (mag)
Apparent Dimension: 35.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources: