SpaceX Dragon Splashes Down in Pacific with 2 Tons of NASA Space Station Science

The SpaceX Dragon (far right) begins its departure from the International Space Station after being released from the grips of the Canadarm2 robotic arm on Sept. 17, 2017. Credit: NASA TV

KENNEDY SPACE CENTER, FL – Concluding a month long stay at the International Space Station (ISS) a SpaceX Dragon cargo freighter loaded with some two tons of NASA research samples, hardware and micestonauts returned home to make a successful splashdown in the Pacific on Sunday, Sept. 17.

The SpaceX Dragon CRS-12 resupply ship successfully splashed down in the Pacific Ocean at approximately 10:14 a.m. EDT, 7:14 a.m. PDT, 1414 GMT Sunday, southwest of Long Beach, California, under a trio of main parachutes.

The parachute assisted splashdown marked the end of the company’s twelfth contracted cargo resupply mission to the orbiting outpost for NASA.

The capsule returned with more than 3,800 pounds (1,700 kg) of cargo and research and 20 live mice.

“Good splashdown of Dragon confirmed, completing its 12th mission to and from the @Space_Station,” SpaceX confirmed via twitter.

The SpaceX Dragon CRS-12 spacecraft begins its departure from the International Space Station after being released from the grips of the Canadarm2 robotic arm on Sept. 17, 2017. Credit: NASA TV

Liftoff of the SpaceX Falcon 9 carrying Dragon CRS-12 to orbit took place from seaside pad 39A at NASA’s Kennedy Space Center in Florida on Aug. 14 at 12:31 p.m. EDT (1631 GMT).

After a two day orbital chase Dragon had been berthed at the station since arriving on Aug. 16.

SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

Dragon’s departure began early Sunday morning when Expedition 53 Flight Engineer Paolo Nespoli of ESA (European Space Agency) and ISS Commander Randy Bresnik of NASA released the Dragon spacecraft from the grips of the Canadarm2 robotic arm at 4:40 a.m. EDT, 1:40 a.m. PDT, 840 GMT.

The departure events were carried live on NASA TV. There was no live broadcast of the Pacific Ocean landing.

Working from a robotics work station inside the seven windowed domed Cupola module Nespoli and Bresnik used the station’s 57.7-foot-long (17.6 meter-long) Canadian-built robotic arm to detach Dragon from the Earth-facing port of the Harmony module and release it into space.

“We would like to give a big thanks to all the operational teams around the world that keep our presence in space possible – to the scientists and engineers that provide the outstanding research and equipment that we have in space, to NASA and all the space agencies that contribute to the space station. And to SpaceX for giving us this outstanding vehicle,” Nespoli radioed.

Dragon then backed away slowly via a trio of thruster firings.

“The three departure burns to move Dragon away from the @Space_Station are complete,” SpaceX confirmed.

The departure of the SpaceX Dragon Sunday morning, Sept. 17, 2017 leaves three spaceships parked at the space station including the Progress 67 resupply ship and the Soyuz MS-05 and MS-06 crew ships. Credit: NASA

The final de-orbit burn took place as planned around 9 a.m. EDT some four and a half hours after leaving the station and setting Dragon up for the scorching reentry into the Earth’s atmosphere.

“Dragon’s de-orbit burn is complete and trunk has been jettisoned. Pacific Ocean splashdown in ~30 minutes,” said SpaceX.

All the drogue and main parachutes deployed as planned during the descent to Earth.

“Dragon’s three main parachutes have been deployed.”

SpaceX commercial naval ships were on standby to retrieve the spacecraft from the ocean and sail it back to port in Long Beach, California.

Some time critical research specimens will be removed immediately for return to NASA. The remainder will be transported back with Dragon to SpaceX’s test facility in McGregor, Texas, for final post flight processing and handover to NASA.

“A variety of technological and biological studies are returning in Dragon. NASA and the Center for the Advancement of Science in Space (CASIS), the non-profit organization that manages research aboard the U.S. national laboratory portion of the space station, will receive time-sensitive samples and begin working with researchers to process and distribute them within 48 hours,” said NASA in a statement.

The Dragon resupply ship dubbed Dragon CRS-12 counts as SpaceX’s twelfth contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.

SpaceX holds a NASA commercial resupply services (CRS) contract that includes up to 20 missions under the original CRS-1 contract.

The 20-foot high, 12-foot-diameter Dragon CRS-12 vessel carried more than 6,400 pounds ( 2,900 kg) of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex when it launched Aug. 14 from KSC pad 39A.

20 mice were also onboard and were returned alive on the round trip flight.

This mission supported dozens of the 250 research investigations and experiments being conducted by Expedition 52 and 53 crew members – including NASA’s space endurance record breaking astronaut Peggy Whitson.

The Cosmic-Ray Energetics and Mass investigation (CREAM) instrument from the University of Maryland, College Park involves placing a balloon-borne instrument aboard the International Space Station to measure the charges of cosmic rays over a period of three years. CREAM will be attached to the Japanese Experiment Module Exposed Facility. Existing CREAM hardware used for balloon flights. Credit: NASA

Whitson returned to Earth in a Soyuz capsule earlier this month following a 10 month mission and carried out research included in the samples returned by Dragon CRS-12.

Visiting vehicle configuration at the International Space Station (ISS) after arrival of the Soyuz MS-06 spacecraft on Sept. 12, 2017. Credit: NASA

Here’s a NASA science summary:

The Lung Tissue experiment used the microgravity environment of space to test strategies for growing new lung tissue. The ultimate goal of this investigation is to produce bioengineered human lung tissue that can be used as a predictive model of human responses allowing for the study of lung development, lung physiology or disease pathology.

Samples from the CASIS PCG 7 study used the orbiting laboratory’s microgravity environment to grow larger versions of an important protein implicated in Parkinson’s disease. Developed by the Michael J. Fox Foundation, Anatrace and Com-Pac International, researchers will look to take advantage of the station’s microgravity environment which allows protein crystals to grow larger and in more perfect shapes than earth-grown crystals, allowing them to be better analyzed on Earth. Defining the exact shape and morphology of LRRK2 would help scientists to better understand the pathology of Parkinson’s and aid in the development of therapies against this target.

Mice from NASA’s Rodent Research-9 study also will return live to Earth for additional study. The investigation combined three studies into one mission, with two looking at how microgravity affects blood vessels in the brain and in the eyes and the third looking at cartilage loss in hip and knee joints. For humans on Earth, research related to limited mobility and degrading joints can help scientists understand how arthritis develops, and a better understanding of the visual impairments experienced by astronauts can help identify causes and treatments for eye disorders.

The next SpaceX Dragon is due to blastoff around December from KSC.

An Orbital ATK Cygnus cargo ship is slated to launch in November from NASA Wallops in Virginia.

Watch for Ken’s continuing onsite NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Ground landing of SpaceX Falcon 9 first stage at Landing Zone-1 (LZ-1) after SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida from pad 39A at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com
The Soyuz MS-06 rocket blasts off with the Expedition 53-54 crew towards the International Space Station from the Baikonur Cosmodrome in Kazakhstan, Tuesday, Sept. 12, 2017 (Wednesday, Sept. 13, Kazakh time). Credit: NASA/Bill Ingalls

Russian-American Trio Blasts Off and Boards International Space Station After Fast Track Trajectory

The Soyuz MS-06 rocket blasts off with the Expedition 53-54 crew towards the International Space Station from the Baikonur Cosmodrome in Kazakhstan, Tuesday, Sept. 12, 2017 (Wednesday, Sept. 13, Kazakh time). Credit: NASA/Bill Ingalls

Barely a week and a half after the thrilling conclusion to the record breaking space endurance mission by NASA astronaut Peggy Whitson, a new Russian-American trio blasted off for the International Space Station (ISS) on a Russian Soyuz capsule and boarded safely early this morning Wednesday, Sept. 13, after arriving as planned on a fast track orbital trajectory.

NASA astronauts Mark Vande Hei, Joe Acaba and Alexander Misurkin of Roscosmos launched aboard the Soyuz MS-06 spacecraft from the Baikonur Cosmodrome in Kazakhstan overnight at 5:17 p.m. Tuesday, Sept. 12, 2017, (2127 GMT), or 3:17 a.m. Baikonur time Wednesday, Sept. 13, on the Expedition 53 mission.

Following the flawless launch and achieving orbit the three man crew executed a perfect four orbit, six hour rendezvous and arrived at the orbiting laboratory complex at 10:55 p.m. EDT Tuesday, Sept. 12, (or Wednesday, Sept. 13, Kazakh time) where they will carry out a jam packed schedule of scientific research in a wide array of fields.

The entire launch sequence aboard the Soyuz rocket performed flawlessly and delivered the Soyuz capsule to its targeted preliminary orbit eight minutes and 45 seconds after liftoff followed by the opening of the vehicles pair of life giving solar arrays and communications antennas.

The whole event from launch to docking was broadcast live on NASA TV.

Soyuz reached the ISS after a rapid series of orbit raising maneuvers over four orbits and six hours to successfully complete all the rendezvous and docking procedures to attach to the station at the Russian Poisk module.

“Contact! We have mechanical contact,” radioed Misurkin.

The Soyuz MS-06 spacecraft carrying NASA astronauts Mark Vande Hei and Joe Acaba and cosmonaut Alexander Misurkin of Roscosmos is seen on the right approaching the International Space Station on Tuesday, Sept. 12, 2017. The spacecraft docked to the station at 10:55 p.m. EDT. Credits: NASA Television

After conducting leak and safety checks the new trio opened the hatches between the Soyuz spacecraft and station at 1:08 a.m. EDT this morning, Sept. 13 and floated into the million pound orbiting outpost.

The arrival of Vande Hei, Acaba and Misurkin restores the station’s multinational habitation to a full complement of six astronaut and cosmonaut crewmembers.

They join Expedition 53 Commander Randy Bresnik of NASA and Flight Engineers Sergey Ryazanskiy of Roscosmos and Paolo Nespoli of ESA (European Space Agency).

The station had been temporarily reduced to a staff of three for 10 days following the departure of the Expedition 52 crew including record setting Whitson, NASA astronaut Jack Fischer and veteran cosmonaut Fyodor Yurchikhin of Roscosmos.

This is the rookie flight for Vande Hei, the second for Misurkin and the third for Acaba. They will remain aboard the station for a planned five month long ISS expedition continuing into early 2018.

Vande Hei was selected as an astronaut in 2009. Misurkin previously flew to the station on the Expedition 35/36 increments in 2013. Acaba was selected as an astronaut in 2004. He flew on space shuttle mission STS 119 and conducted two spacewalks – as well as on the Expedition 31/32 increments in 2012 and has logged a total of 138 days in space.

Originally the Soyuz MS-06 was only to fly with a two person crew – Vande Hei and Misurkin after the Russians decided to reduce their cosmonaut crew from three to two to save money.

Acaba was added to the crew only in March of this year when NASA and Roscosmos brokered an agreement to fill the empty seat with a NASA astronaut, under an arrangement worked out for 5 astronauts seats on Soyuz through a procurement by Boeing, as compensation for an unrelated matter.

The Russian cosmonaut crew cutback enabled Whitson’s mission extension by three months and also proved to be a boon for NASA and science research. It enabled the US/partner USOS crew complement to be enlarged from three to four full time astronauts much earlier than expected.

This allowed NASA to about double the weekly time devoted to research aboard station – a feat not expected to happen until America’s commercial crew vehicles, namely Boeing Starliner and SpaceX Crew Dragon – finally begin inaugural launches next year from the Kennedy Space Center in mid-2018.

With Acaba and Vande Hei now on orbit joining Bresnik and Nespoli, the USOS crew stands at four and will continue.

The six crewmembers will carry out research supporting more than 250 experiments in astrophysics, biology, biotechnology, physical science and Earth science.

“During Expedition 53, researchers will study the cosmic ray particles, demonstrate the benefits of manufacturing fiber optic filaments in microgravity, investigate targeted therapies to improve muscle atrophy and explore the abilities of a new drug to accelerate bone repair,” says NASA.

Among the key investigations involves research on cosmic ray particles reaching Earth using ISS-CREAM, examining effects on the musculoskeletal system and exploring targeted therapies for slowing or reversal of muscle atrophy with Rodent Research 6 (RR-6), demonstrating the benefits of manufacturing fiber optic filaments in a microgravity environment with the Optical Fiber Production in Microgravity (Made in Space Fiber Optics) hardware, and working on drugs and materials for accelerating bone repair with the Synthetic Bone experiment to develop more effective treatments for patients with osteoporosis.

Expedition 53 Flight Engineers Mark Vande Hei and Joe Acaba of NASA and Soyuz Commander Alexander Misurkin of Roscosmos launched from the Baikonur Cosmodrome in Kazakhstan, Tuesday, Sept. 12, 2017 (Wednesday, Sept. 13, Kazakh time), and arrived at the International Space Station at 10:55 p.m. to begin their 5.5-month mission aboard the station. Credits: NASA/Bill Ingalls

Bresnik, Ryazanskiy and Nespoli are scheduled to remain aboard the station until December. Whereas Vande Hei, Acaba and Misurkin are slated to return in February 2018.

Watch this cool Roscosmos video showing rollout of the Soyuz rocket to the Baikonur launch pad and erection in advance of launch. Credit: Roscosmos

Meanwhile one of the first tasks of the new trio will be to assist with the departure of the SpaceX Dragon CRS-12 spacecraft upcoming this Sunday, Sept 17.

Dragon will be detached from the Harmony module using the stations Canadian-built robotic arm on Sunday and released for a splashdown and retrieval in the Pacific Ocean Sunday morning. It is carrying some hardware items as well as scores of science samples.

SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

NASA TV will cover the release activities beginning Sunday at 4:30 a.m. EDT.

Visiting vehicle configuration at the International Space Station (ISS) after arrival of the Soyuz MS-06 spacecraft on Sept. 12, 2017. Credit: NASA

Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

The space station’s Expedition 53 crew members are (from left) Joe Acaba, Alexander Misurkin, Mark Vande Hei, Sergey Ryazanskiy, Commander Randy Bresnik and Paolo Nespoli. Credit: NASA
Expedition 53 Crew Insignia

NASA’s Peggy Whitson Safely Returns Home in Soyuz from Record Breaking Stay in Space

The Soyuz MS-04 vehicle is pictured the moment it touches down with the Expedition 52 crew inside comprising NASA astronauts Peggy Whitson and Jack Fisher and Commander Fyodor Yurchikhin of Roscosmos on Sept. 3, 2017, Kazakhstan time. Credit: NASA/Bill Ingalls

NASA’s Peggy Whitson, America’s most experienced astronaut, returned to Earth safely and smiling Sunday morning on the steppes of Kazakhstan, concluding her record-breaking stay in space aboard the International Space Station (ISS) along with Soyuz crewmates Jack Fischer of NASA and Commander Fyodor Yurchikhin of Roscosmos.

The multinational trio touched down softly on Earth inside their Soyuz MS-04 descent capsule on Saturday evening, Sept. 2 at 9:21 p.m. EDT (shortly after sunrise 7:21 a.m. Kazakhstan time, Sept. 3), some 90 miles southeast of the remote town of Dzhezkazgan in Kazakhstan.

Whitson wrapped up a 288-day extended mission in obviously good health that began in November 2016, spanning 122.2 million miles and 4,623 orbits of Earth – completing her third long-duration stay on the orbiting science outpost spanning Expeditions 50, 51 and 52.

“A flawless descent and landing,” said NASA commentator Rob Navias during the live NASA TV coverage of the return of the ISS Expedition 52 crew Saturday afternoon and evening US time.

“The crew is back on Earth safe and sound.”

NASA astronaut Peggy Whitson, Russian cosmonaut Fyodor Yurchikhin of Roscosmos, and NASA astronaut Jack Fischer undergo routine initial medical checks after returning from their mission aboard the International Space Station at 9:21 p.m. EDT Saturday, Sept. 2, 2017 (7:21 a.m. Kazakhstan time, Sunday, Sept. 3), landing southeast of the remote town of Dzhezkazgan in Kazakhstan. Credits: NASA TV

She has now accrued a total of 665 days in space – more than any American astronaut – over the course of her illustrious career during which she set multiple U.S. space records spanning a total of three spaceflights.

Whitson’s 665 total accumulated days in space places her eighth on the all-time space endurance list – just 8 days behind her Russian crewmate and Soyuz Commander Fyodor Yurchikhin who now ranks 7th on the all-time list with 673 days in space on his five flights. She has exceeded the endurance record of her next closest NASA competitor by 131 days – namely NASA astronaut Jeff Williams.

The remarkable 57-year-old Ph.D biochemist by training has spent nearly 2 years of her entire life in space and she holds several other prestigious records as well – including more accumulated time in space than any other woman and the longest single spaceflight by a women – 288 days!

During this mission Whitson became the first woman to serve twice as space station commander. Indeed in 2008 Whitson became the first woman ever to command the space station during her prior stay on Expedition 16 a decade ago. Her second stint as station commander this mission began earlier this year on April 9.

Whitson also holds the record for the most spacewalks and the most time spent spacewalking by a female astronaut. Altogether she has accumulated 60 hours and 21 minutes of EVA time over ten spacewalks -ranking her third most experienced in the world.

Notably Soyuz Commander Yurchikhin ranks fourth in spacewalking experience. Only Russia’s Anatoly Solovyev and NASA’s Michael Lopez-Alegria have more spacewalking time to their credit.

NASA’s Jack Fischer completed his rookie spaceflight accumulating 136 days in space aboard the ISS.

Astronaut Peggy Whitson is pictured May 12, 2017, during the 200th spacewalk at the International Space Station. Credit: NASA

Whitson originally launched to the ISS on Nov 17, 2016 aboard the Russian Soyuz MS-03 spacecraft from the Baikonur Cosmodrome in Kazakhstan, as part of the three person Expedition 50 crew including flight engineers Oleg Novitskiy of Roscosmos and Thomas Pesquet of ESA (European Space Agency).

Her flight was unexpectedly extended in flight after the Russian government decided to cut back on the number of space station crew cosmonauts this year from three to two to save money. Thus a return seat became available on this Soyuz MS-04 return flight after NASA negotiated an extension with Rosmoscos in April enabling Whitson to remain on board the orbiting outpost an additional three months beyond her than planned June return home.

Whitson’s mission extension proved to be a boon for NASA and science research enabling the US/partner USOS crew complement to be enlarged from three to four full time astronauts much earlier than expected. This allowed NASA to about double the weekly time devoted to research aboard station – a feat not expected to happen until America’s commercial crew vehicles, namely Boeing Starliner and SpaceX Crew Dragon – finally begin inaugural launches next year from the Kennedy Space Center in mid-2018.

NASA Astronaut Peggy Whitson after safe return to Earth on Sept. 2, 2017 ET. Credit: NASA

Descending dramatically while hanging below a single gigantic orange-and-white parachute the scorched Russian Soyuz vehicle fired its braking rockets just moments before touchdown in Kazakhstan to cushion the crew for a gentle landing under beautifully sunny skies.

A live NASA TV video feed captured the thrilling descent for over 14 minutes after the main parachute deployed all the way to the ground under clear blue sunny Sunday morning weather conditions and comfortably local Kazakh temperatures of 77 degrees F.

“Everything today went in perfect fashion from the undocking, to the deorbit burn to landing,” said Navias. “It went by the book with no issues.”

“We saw a spectacular 14 minute long live video of the Soyuz descent and landing.”

The Soyuz MS-04 carrying NASA astronauts Peggy Whitson and Jack Fischer and Fyodor Yurchikin of Roscosmos back to Earth from the International Space Station touched down at at 9:21 p.m. EDT Saturday, Sept. 2 (7:21 a.m. Kazakhstan time, Sunday, Sept. 3), southeast of the remote town of Dzhezkazgan in Kazakhstan. Credits: NASA TV

Russian search and recovery forces quickly arrived via a cluster of MI-8 helicopters after the soft landing to begin their normal procedures to extract the three Expedition 52 crew members from their cramped Soyuz descent module.

Soyuz Commander Yurchikhin in the center seat was hauled out first, followed by Fischer in the left side seat and lastly Whitson in the right seat. All 3 were placed on reclining seats sitting side by side and appeared quite well, conversing and speaking via satellite phones.

A group of Russian and US medical teams were on hand to check the astronauts and cosmonauts health and help the crewmates begin readapting to the tug of Earth’s gravity they have not experienced after many months of weightlessness in space.

Whitson’s final planned news conference from space with the media to sum up her experiences this past Wednesday had to be cancelled due to the catastrophic flooding events from Hurricane Harvey impacting Houston and elsewhere in Texas – including Mission Control which was forced to close multiple days.

The crews had bid their final farewells earlier and closed the hatches between the Soyuz and station at 2:40 p.m. EDT Saturday.

After conducting final spacecraft systems checks the trio unhooked the latches and undocked from the International Space Station at 5:58 p.m. EDT to begin their voyage home through the scorching heats of reentry in the Earth’s atmosphere that reached over 2500 degrees F (1400 degrees C) on the outside.

“While living and working aboard the world’s only orbiting laboratory, Whitson and Fischer contributed to hundreds of experiments in biology, biotechnology, physical science and Earth science, welcomed several cargo spacecraft delivering tons of supplies and research experiments, and conducted a combined six spacewalks to perform maintenance and upgrades to the station,” said NASA.

“Among their scientific exploits, Whitson and Fischer supported research into the physical changes to astronaut’s eyes caused by prolonged exposure to a microgravity environment. They also conducted a new lung tissue study that explored how stem cells work in the unique microgravity environment of the space station, which may pave the way for future stem cell research in space.”

“Additional research included an antibody investigation that could increase the effectiveness of chemotherapy drugs for cancer treatment, and the study of plant physiology and growth in space using an advanced plant habitat. NASA also attached the Cosmic Ray Energetics and Mass Investigation (ISS CREAM) on the outside of the space station in August, which is now observing cosmic rays coming from across the galaxy.”

Astronaut Peggy Whitson signs her autograph near an Expedition 50 mission patch attached to the inside the International Space Station. Credit: NASA

ISS Expedition 53 began at the moment of undocking from the space station, now under the command of veteran NASA astronaut Randy Bresnik since the official change of command ceremony on Friday.

Along with his crewmates Sergey Ryazanskiy of Roscosmos and Paolo Nespoli of ESA (European Space Agency), the three-person crew will operate the station for the next 10 days until the imminent arrival of three new crew members.

The station will get back to a full complement of six crewmembers after the upcoming Sept. 12 launch and fast track 4 orbit 6 hour docking of NASA astronauts Mark Vande Hei and Joe Acaba of NASA and Alexander Misurkin of Roscosmos aboard the next Soyuz MS-06 spacecraft departing from the Baikonur Cosmodrome, Kazakhstan.

Meanwhile the next launch from the Kennedy Space Center is slated for this Thursday, Sept.7 is the SpaceX Falcon 9 carrying the USAF X-37B OTV-5 military mini-shuttle to low Earth orbit -detailed here.

Peggy Whitson set the record on Sept. 2, 2017, for most cumulative days living and working in space by a NASA astronaut at 665 days. Credit: NASA
Expedition 52 Flight Engineer Peggy Whitson of NASA, Commander Fyodor Yurchikhin of the Russian space agency Roscosmos and Flight Engineer Jack Fischer of NASA float through the Harmony module of the International Space Station. Credits: NASA

Watch for Ken’s continuing onsite X-37B OTV-5 and NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Ken Kremer

Soyuz has split into 3 modules 139.8 km above Earth. Crew parachutes to landing inside Descent Module at 9:22 pm ET Sept. 2, 2017. Credit: NASA
Expedition 52 crew returns to Earth Sept. 2, 2017. Credit: NASA
Peggy Whitson @AstroPeggy is 3rd place all-time for cumulative spacewalk time with 10 spacewalks totaling 60 hours, 21 minutes. Credit: NASA

Veteran Multinational Trio Launches on Soyuz and Arrives at International Space Station

The Soyuz MS-05 rocket is launched with Expedition 52 flight engineer Sergei Ryazanskiy of Roscosmos, flight engineer Randy Bresnik of NASA, and flight engineer Paolo Nespoli of ESA (European Space Agency), Friday, July 28, 2017 at the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Joel Kowsky)

An all veteran multinational trio of astronauts and cosmonauts rocketed to orbit aboard a Russian Soyuz capsule and safely arrived at the International Space Station (ISS) after a fast track rendezvous on Friday, July 28.

NASA astronaut Randy Bresnik, Sergey Ryazanskiy of Roscosmos and Paolo Nespoli of ESA (European Space Agency) docked at the orbiting outpost at 5:54 p.m. EDT (2154 GMT) Friday just six hours after departing our Home Planet.

The three crewmates launched aboard the Russian Soyuz MS-05 spacecraft from the Baikonur Cosmodrome in Kazakhstan during a typically hot mid-summers night at 9:41 p.m. Baikonur time, or 11:41 a.m. EDT, 1541 GMT, as the booster and Baikonur moved into the plane of the space station’s orbit. They blasted to space from the same pad as Yuri Gagarin, the first man in space.

The entire launch sequence aboard the Soyuz rocket performed flawlessly and delivered the Soyuz capsule to its targeted preliminary orbit flowing by the planned opening of the vehicles solar arrays and antennas.

The Russian Soyuz MS-05 carrying NASA astronaut Randy Bresnik, Sergey Ryazanskiy of the Russian space agency Roscosmos, and Paolo Nespoli of ESA (European Space Agency) docked to the International Space Station at 5:54 p.m. on Friday, July 28, 2017. Credits: NASA Television

Following a rapid series of orbit raising maneuvers, the Soyuz reached the ISS after 4 orbits and six hours to successfully complete all the rendezvous and docking procedures.

The Soyuz docked at the Earth-facing Russian Rassvet module as the spaceships were flying some 250 mi (400 km) over Germany.

The Soyuz MS-05 rocket is launched with Expedition 52 flight engineer Sergei Ryazanskiy of Roscosmos, flight engineer Randy Bresnik of NASA, and flight engineer Paolo Nespoli of ESA (European Space Agency), Friday, July 28, 2017 at the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Joel Kowsky)

Following the standard pressurization and leak checks, the hatches between the spacecraft and station were opened from inside the ISS at about 9:45 p.m. EDT.

The new trio of Bresnik, Ryazanskiy and Nespoli then floated one by one from the Soyuz into the station and restored the outpost to a full strength crew of six humans.

The veteran space flyers join Commander Fyodor Yurchikhin of Roscosmos and Flight Engineers Peggy Whitson and Jack Fischer of NASA who are already serving aboard.

Thus begins Expedition 52 aboard the million pound orbiting science complex.

The Soyuz MS-05 rocket is launched with Expedition 52 flight engineer Sergei Ryazanskiy of Roscosmos, flight engineer Randy Bresnik of NASA, and flight engineer Paolo Nespoli of ESA (European Space Agency), Friday, July 28, 2017 at the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Joel Kowsky)

This is the second space flight for both Bresnik and Ryazanskiy and the third for Nespoli.

Bresnik previously flew to the space station as a member of the STS-129 space shuttle Atlantis mission in November 2009. The 10 day mission delivered two Express Logistics Carriers (ELC racks) to the space station as part of approximately 30,000 pounds of replacement parts.

Bresnik performed two spacewalks for a total of 11 hours and 50 minutes during the STS-129 mission. He is slated to take command of the ISS as a member of Expedition 53.

The six person crew of Space Shuttle Atlantis walk out from crew quarters at 10:38 AM to greet the cheering crowd of media and NASA officials and then head out to pad 39 A to strap in for space launch with hours. Randy Bresnik is third from left. Credit: Ken Kremer/kenkremer.com

The new Expedition 52 crew will spend a four and a half month stint aboard the station and continue over 250 ongoing science investigations in fields such as biology, Earth science, human research, physical sciences and technology development.

Bresnik, Ryazanskiy and Nespoli are slated to stay aboard until returning to Earth in December.

Whitson, Fischer and Yurchikhin are in the home stretch of their mission and will retun to Earth in September. Shortly after their departure, NASA astronauts Mark Vande Hei and Joseph Acaba and Russian cosmonaut Alexander Misurkin will launch on the next Soyuz from Kazakhstan to join the Expedition 53 crew.

Whitson is the most experienced US astronaut with time in space. Her record setting cumulative time in space will exceed 600 days and include a 9 month stay on this flight upon her return to Earth.

She most recently launched to the ISS last year on Nov 17, 2016 aboard a Russian Soyuz capsule from the Baikonur Cosmodrome. This is her 3rd long duration stay aboard the station.

Whitson also holds the record for most spacewalks by a female astronaut. Altogether she has accumulated 53 hours and 23 minutes of EVA time over eight spacewalks.

The newly-expanded Expedition 52 crew expect to welcome a pair of unmanned US cargo ships carrying new research experiments and supplies, namely the SpaceX Dragon as soon as August and Orbital ATK Cygnus a month or two later, on NASA-contracted commercial resupply missions.

The SpaceX CRS-12 mission will carry investigations ”the crew will work on including a study developed by the Michael J. Fox Foundation of the pathology of Parkinson’s disease to aid in the development of therapies for patients on Earth. The crew will use the special nature of microgravity in a new lung tissue study to advance understanding of how stem cells work and pave the way for further use of the microgravity environment in stem cell research. Expedition astronauts also will assemble and deploy a microsatellite investigation seeking to validate the concept of using microsatellites in low-Earth orbit to support critical operations, such as providing lower-cost Earth imagery in time-sensitive situations such as tracking severe weather and detecting natural disasters.”

Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Reused SpaceX Dragon Supply Ship Arrives Space Station, Cygnus Departs, Falcon 9 Launch & Landing: Photos/Videos

The SpaceX Dragon CRS-11 is seen seconds away from its capture with the Canadarm2 robotic arm on June 5, 2017. Credit: NASA TV

KENNEDY SPACE CENTER, FL – The first ever reused Dragon supply ship successfully arrived at the International Space Station (ISS) two days after a thunderous liftoff from NASA’s Kennedy Space Center atop a SpaceX Falcon 9 rocket on Saturday, June 3. The first stage booster made a magnificent return to the Cape and erect ground landing some 8 minutes after liftoff.

Meanwhile the already berthed Orbital ATK Cygnus OA-7 supply ship departed the station on Sunday, June 4 after ground controllers detached it and maneuvered it into position for departure.

The commercial Dragon cargo freighter carrying nearly 3 tons of science and supplies for the multinational crew on the CRS-11 resupply mission reached the space stations vicinity Monday morning, June 5, after a two day orbital chase starting from the Kennedy Space Center and a flawless series of carefully choreographed thruster firings culminated in rendezvous.

Liftoff of the SpaceX Falcon 9 rocket carrying the unmanned Dragon cargo freighter from seaside Launch Complex 39A at KSC in Florida took place during an instantaneous launch window at 5:07 p.m. EDT Saturday, June 3, following a 48 hour delay due to a stormy weather scrub at the Florida Space Coast on Thursday, June 1.

The stunning Falcon 9 launch and landing events were captured by journalists and tourists gathered from around the globe to witness history in the making with their own eyeballs.

The Falcon 9 blastoff also counts as the 100th flight from KSC’s historic pad 39A which previously launched NASA’s Apollo astronauts on lunar landing missions and space shuttles for 3 decades

Check out the expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.

Click back as the gallery grows !

1st Reused SpaceX Dragon cargo craft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. June 3, 2017 on CRS-11 mission carrying 3 tons of research equipment, cargo and supplies to the International Space Station. Credit: Ken Kremer/kenkremer.com

By 8:30 a.m. Monday morning ground controllers had maneuvered Dragon to within 250 meters of the station and the imaginary keep out sphere around the orbiting complex.

Engineers carefully assessed the health of the Dragon and its systems to insure its ability to slowly and safely move in closer for capture by the crew.

When Dragon reached a distance of 11 meters, it was grappled by Expedition 52 astronauts Peggy Whitson and Jack Fischer using the 57.7 foot long (17.6 meter long) Canadian-built robotic arm Monday morning at 9:52 a.m. EDT, a few minutes ahead of schedule.

“Capture complete,” radioed Whitson as Dragon was captured at its grapple pin by the grappling snares at the terminus of the Canadarm2 robotic arm.

Dragon’s capture took place as the ISS was orbiting 250 miles over the South Atlantic Ocean as it was nearing the East coast of Argentina.

“Complete complete. Go for capture configuration,” replied Houston Mission control.

The newly arrived SpaceX Dragon CRS-11 resupply ship is installed to the Harmony module on June 5, 2017. The Progress 66 cargo craft is docked to the Pirs docking compartment and the Soyuz MS-04 crew vehicle is docked to the Poisk module. Credit: NASA

“We want to thank the entire team on the ground that made this possible, both in Hawthorne and in Houston. Really around the whole world, from support in Canada for this wonderful robotic arm, Kennedy Space Center’s launch support, to countless organizations which prepared the experiments and cargo,” Fischer radioed in response.

“These people have supplied us with a vast amount of science and supplies, really fuel for the engine of innovation we get to call home, the International Space Station. We have a new generation of vehicles now, led by commercial partners like SpaceX, as they build the infrastructure that will carry us into the future of exploration.”

“It’s also the first second mission to the ISS which was previously here as CRS-4. The last returned visitor was space shuttle Atlantis on the STS-135 mission,” Fischer said.

A little over two hours after it was captured by Expedition 52 Flight Engineers Jack Fischer and Peggy Whitson, ground teams maneuvered the unpiloted SpaceX Dragon cargo craft for attachment to the Earth-facing port of the station’s Harmony module.

“Ground controllers at Mission Control, Houston reported that Dragon was bolted into place at 12:07 p.m. EDT as the station flew 258 statute miles over central Kazakhstan,” NASA reported.

The berthing of Dragon to Harmony was not broadcast live on NASA TV.

1st Reused SpaceX Dragon cargo craft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. June 3, 2017 on CRS-11 mission carrying 3 tons of research equipment, cargo and supplies to the International Space Station. Credit: Ken Kremer/kenkremer.com

Dragon CRS-11 marks SpaceX’s eleventh contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.

Check out these exquisite videos from a wide variety of vantage points including remote cameras at the pad and Cape Canaveral media viewing site – including an A/V compilation of sonic booms from the propulsive ground landing.

Video Caption: CRS-11 Launch from KSC Pad 39A with the first re-used Dragon capsule. SpaceX Falcon 9 launch of the CRS-11 mission to take supplies, equipment and experiments to the ISS, followed by the first stage landing at LZ-1 on the Cape Canaveral Air Force Station. Credit: Jeff Seibert

Video Caption: SpaceX Falcon 9/Dragon CRS 11 Launch 3 June 2017. Launch of SpaceX Falcon 9 on June 3, 2017 from pad 39A at the Kennedy Space Center, FL carrying 1st recycled Dragon supply ship bound for the International Space Station on the CRS-11 mission loaded with 3 tons of science and supplies – as seen in this remote video taken at the pad under cloudy afternoon skies. Credit: Ken Kremer/kenkremer.com

Video Caption: Sonic booms from the return of the CRS-11 booster to LZ-1 on June 3, 2017. Triple sonic booms signal the return of the Falcon 9 first stage to LZ-1 after launching the CRS-11 Dragon spacecraft to the ISS. Credit: Jeff Seibert

The gumdrop shaped 20-foot high, 12-foot-diameter Dragon is carrying almost 5,970 pounds of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex.

SpaceX Falcon 9 booster deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 3 June 2017 from the Kennedy Space Center in Florida on the Dragon CRS-11 resupply mission to the International Space Station for NASA. Credit: Ken Kremer/Kenkremer.com

The CRS-11 cargo ship will support over 62 of the 250 active research investigations and experiments being conducted by Expedition 52 and 53 crew members.

The flight delivered investigations and facilities that study neutron stars, osteoporosis, solar panels, tools for Earth-observation, and more.

40 new micestonauts are also aboard inside the rodent research habitat for a first of its kind osteoporosis science study – that seeks to stem the loss of bone density afflicting millions of people on Earth and astronauts crews in space by testing an experimental drug called NELL-1. The therapy will also examine whether bone can be regenerated for the first time. No drug exists for bone regeneration.

The unpressurized trunk of the Dragon spacecraft also transported 3 payloads for science and technology experiments and demonstrations.

The truck payloads include the Roll-Out Solar Array (ROSA) solar panels, the Multiple User System for Earth Sensing (MUSES) facility which hosts Earth-viewing instruments and tools for Earth-observation and equipment to study neutron stars with the Neutron Star Interior Composition Explorer (NICER) payload.

NICER is the first ever space mission to study the rapidly spinning neutron stars – the densest objects in the universe. The launch coincidentally comes nearly 50 years after they were discovered by British astrophysicist Jocelyn Bell.

A second objective of NICER involves the first space test attempting to use pulsars as navigation beacons through technology called Station Explorer for X-Ray Timing and Navigation (SEXTANT).

Blastoff of 1st recycled SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center on June 3, 2017 delivering Dragon CRS-11 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

NASA decided to use the SpaceX weather related launch delay to move up the departure of the “SS John Glenn” Cygnus cargo ship by over a month since it was already fully loaded and had completed its mission to deliver approximately 7,600 pounds of supplies and science experiments to the orbiting laboratory and its Expedition 51 and 52 crew members for Orbital ATK’s seventh NASA-contracted commercial resupply mission called OA-7.

Named after legendary Mercury and shuttle astronaut John Glenn – 1st American to orbit the Earth – the supply ship had spent 44 days at the station.

The “SS John Glenn” will now remain in orbit a week to conduct the third SAFFIRE fire experiment as well as deploy four small Nanoracks satellites before Orbital ATK flight controllers send commands June 11 to deorbit the spacecraft for its destructive reentry into the Earth’s atmosphere over the Pacific Ocean.

The Orbital ATK Cygnus cargo craft, with its prominent Ultra Flex solar arrays, is pictured moments after being released from the International Space Station on June 4, 2017 . Credit: NASA TV

Watch for Ken’s onsite CRS-11 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

……….

SpaceX Falcon 9 aloft carrying 1st reused Dragon on CRS-11 resupply flight to the International Space Station on June 3, 2017 from Launch Complex 39A at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com
Blastoff of SpaceX Falcon 9 with reused Dragon CRS-11 cargo craft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. on June 3, 2017. Credit: Julian Leek
Descent of SpaceX Falcon 9 1st stage towards Landing Zone-1 at Cape Canaveral after Jun 3, 2017 launch from pad 39A at the Kennedy Space Center. Credit: Julian Leek
Recycled SpaceX Dragon CRS-11 cargo craft lifted off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. June 3, 2017 carrying 3 tons of research equipment, cargo and supplies to Earth orbit and the International Space Station. Credit: Ken Kremer/kenkremer.com
3 June 2017 launch of SpaceX Falcon 9 on CRS-11 mission to the ISS – as seen from Port Orange, FL. Credit: Gerald DaBose
Landing of SpaceX Falcon 9 1st stage following launch of Dragon CRS-11 cargo craft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on June 3, 2017 to the ISS. Credit: Jean Wright
SpaceX Falcon 9 rocket goes erect to launch position atop Launch Complex 39A at the Kennedy Space Center on 1 Jun 2017 as seen the morning before later afternoon launch from inside from the pad perimeter. Liftoff of the CRS-11 resupply mission to the International Space Station (ISS) slated for 1 June 2017. Credit: Ken Kremer/Kenkremer.com
Up close view of SpaceX Dragon CRS-11 resupply vessel atop Falcon 9 rocket and delivering 3 tons of science and supplies to the International Space Station (ISS) for NASA. Liftoff slated for 1 June 2017. Credit: Ken Kremer/Kenkremer.com

100th Blastoff from Historic Pad 39A Features SpaceX Resupply to Space Station and Land Landing June 1: Watch Live

SpaceX Falcon 9 rocket goes erect to launch position atop Launch Complex 39A at the Kennedy Space Center on 1 Jun 2017 as seen the morning before later afternoon launch from inside from the pad perimeter. Liftoff of the CRS-11 resupply mission to the International Space Station (ISS) slated for 1 June 2017. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – The 100th blastoff from NASA’s historic pad 39A features a SpaceX Dragon resupply mission carrying three tons of science and crew supplies to the International Space Station (ISS) as well as another unfathomable ground landing of the Falcon 9 rockets first stage. UPDATE: Stormy weather and lightning scrubs launch until Saturday, June 3 at 5:07 p.m. EDT

40 micetonauts are also aboard for a first of its kind osteoporosis science study – that seeks to stem the loss of bone density afflicting millions of people on Earth and astronauts crews in space by testing an experimental drug called NELL-1. Update: The rocket was lowered into horizontal position in order to swap out the 40 micetonauts and other time critial cargo items.

Liftoff of the SpaceX Falcon 9 rocket carrying the unmanned Dragon cargo freighter from seaside pad 39A at NASA’s Kennedy Space Center in Florida is slated for 5:55 p.m. EDT Thursday, June 1.

Everything is on track for Thursday’s dinnertime launch of the 230 foot tall SpaceX Falcon 9 on the NASA contracted SpaceX CRS-11 resupply mission to the million pound orbiting lab complex.

However since the launch window is instantaneous there is no margin. In case any delays arise during the countdown due to technical or weather issues a 48 hour scrub to Saturday will result.

The launch is coincidently scheduled for dinnertime offering a spectacular opportunity for fun for the whole family as space enthusiasts flock in from around the globe.

Plus SpaceX will attempt a land landing of the 156 foot tall first stage back at the Cape at Landing Zone 1 some 9 minutes after liftoff.

To date SpaceX has successfully recovered 10 boosters, 4 by land and 6 by sea, over the past 18 months – in a feat straight out of science fiction but aimed at drastically slashing the cost of access to space.

If you can’t personally be here to witness the launch in Florida, you can watch NASA’s live coverage on NASA Television and the agency’s website.

The SpaceX/Dragon CRS-11 launch coverage will be broadcast on NASA TV beginning 5:15 p.m. on June 1. with additional commentary on the NASA launch blog.

SpaceX will also feature their own live webcast beginning approximately 20 minutes before launch at 5:35 p.m. EDT.

You can watch the launch live at NASA TV at – http://www.nasa.gov/nasatv

You can watch the launch live at SpaceX Webcast at – spacex.com/webcast

In the event of delay for any reason, the next launch opportunity is 5:07 p.m. Saturday, June 3, with NASA TV coverage starting at 4:30 p.m.

Up close view of SpaceX Dragon CRS-11 resupply vessel atop Falcon 9 rocket and delivering 3 tons of science and supplies to the International Space Station (ISS) for NASA. Liftoff slated for 1 June 2017. Credit: Ken Kremer/Kenkremer.com

The weather looks somewhat iffy at this time with a 70% chance of favorable conditions at launch time according to Air Force meteorologists with the 45th Space Wing at Patrick Air Force Base. The primary concerns on June 1 are for afternoon thunderstorms, anvil clouds and cumulus clouds.

The odds drop to 60% favorable for the scrub day on June 3.

The Dragon resupply ship dubbed Dragon CRS-11 counts as SpaceX’s eleventh contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.

The 20-foot high, 12-foot-diameter Dragon is carrying almost 5,970 pounds of science research, crew supplies and hardware to the orbiting laboratory in support of Expedition 52 and 53 crew members.

The flight will deliver investigations and facilities that study neutron stars, osteoporosis, solar panels, tools for Earth-observation, and more.

The unpressurized trunk of the spacecraft also will transport 3 payloads for science and technology experiments and demonstrations.

The truck payloads include the Roll-Out Solar Array (ROSA) solar panels, the Multiple User System for Earth Sensing (MUSES) facility which hosts Earth-viewing instruments and tools for Earth-observation and equipment to study neutron stars with the Neutron Star Interior Composition Explorer (NICER) payload.

NICER is the first ever space mission to study the rapidly spinning neutron stars – the densest objects in the universe. The launch coincidentally comes nearly 50 years after they were discovered by British astrophysicist Jocelyn Bell.

Dragon CRS-11 will be the second SpaceX resupply mission to launch this year.

The prior SpaceX cargo ship launched on Feb 19, 2017 on the CRS-10 mission to the space station. It was also the first SpaceX launch of a Falcon 9 from NASA’s historic pad 39A.

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Another significant milestone for this flight is that it features the first reuse of a previously launched Dragon. It previously launched on the CRS-4 resupply mission.

The recycled Dragon has undergone some refurbishments to requalify it for flight.

If all goes well, Dragon will arrive at the ISS 2 days after launch and be grappled by Expedition 51 astronauts Peggy Whitson and Jack Fischer using the 57 foot long (17 meter long) Canadian-built robotic arm.

They will berth Dragon at the Earth-facing port of the Harmony module. .

Overall CRS-11 marks the 100th launch from pad 39A and the sixth SpaceX launch from this pad.

SpaceX leased pad 39A from NASA in 2014 and after refurbishments placed the pad back in service this year for the first time since the retirement of the space shuttles in 2011. To date this is the sixth SpaceX launch from this pad.

Previous launches include 11 Apollo flights, the launch of the unmanned Skylab in 1973, 82 shuttle flights and five SpaceX launches.

SpaceX Falcon 9 deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s onsite CRS-10 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39A at the Kennedy Space Center on 19 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission took place on 19 Feb 2017 in this file photo. Credit: Ken Kremer/Kenkremer.com
The NASA KSC prelaunch briefing for the SpaceX Dragon CRS-11 launch held on May 31, 2017 at NASA’s Kennedy Space Center Press Site. Credit: Ken Kremer/kenkremer.com

2 US Astronauts Conduct Unplanned, Rapidly Executed Contingency Space Walk on Space Station

Astronaut Jack Fischer waves while attached to the Destiny laboratory during a spacewalk on May 23, 2017 to replace a failed data relay box and install a pair wireless antennas. Credit: NASA

In the space of just 3 days, a pair of NASA astronauts conducted an unplanned and rapidly executed contingency space walk on the exterior of the space station on Tuesday, May 23 in order to replace a critical computer unit that failed over the weekend.

The spacewalk was conducted by Expedition 51 Commander Peggy Whitson – NASA’s most experienced astronaut – and Flight Engineer Jack Fischer aboard the International Space Station (ISS).

This marked the 10th spacewalk for Whitson – who already has the most cumulative spacewalk time by a female and the most time in space by a NASA astronaut. This was Fischer’s second spacewalk.

Furthermore Whitson now moves into third place all-time for cumulative spacewalking time totaling 60 hours, 21 minutes. Only Russia’s Anatoly Solovyev and NASA’s Michael Lopez-Alegria have more spacewalking time to their credit.

Peggy Whitson @AstroPeggy is 3rd place all-time for cumulative spacewalk time with 10 spacewalks totaling 60 hours, 21 minutes. Credit: NASA

NASA managers ordered the spacewalk over the weekend when a computer unit known as multiplexer-demultiplexer-1 (MDM-1) unexpectedly failed Saturday morning, May 20 at 1:13 p.m. Central time.

The cause of the MDM failure is not known, says NASA. Multiple attempts by NASA flight controllers to restore power to the MDM-1 relay box were not successful.

The US dynamic duo successfully changed out the MDM computer relay box with a spare unit on board the station. They also installed a pair of antennas on the station on the U.S. Destiny Laboratory module to enhance wireless communication for future spacewalks.

The MDM functions as a data relay box and is located on the S0 truss on the exterior of the US segment of the ISS, thereby necessitating a spacewalk by astronaut crew members.

After NASA engineers thoroughly assessed the situation and reviewed spacewalk procedures on Sunday, May 21, they gave the go ahead for Whitson and Fischer to carry out the hurriedly arranged extravehicular activity (EVA) spacewalk on Tuesday.

Meanwhile, Whitson worked on Sunday to prepare the spare data relay box and test its components to ensure it was ready for Tuesdays swap out of the failed unit.

“The relay box, known as a multiplexer-demultiplexer (MDM), is one of two units that regulate the operation of radiators, solar arrays and cooling loops.” says NASA.

“Because each MDM is capable of performing the critical station functions, the crew on the station was never in danger and station operations have not been affected.”

The two MDM’s housed in the truss are fully redundant systems.

“The other MDM in the truss is functioning perfectly, providing uninterrupted telemetry routing to the station’s systems.”

The spacewalk began Tuesday morning, May 23 at 7:20 a.m. EDT when the two NASA astronauts switched their spacesuits to battery power.

While Whitson focused on the MDM swap, Fischer worked on the antenna installation.

The unplanned spacewalk marks the second this month by Whitson and Fischer. The first was on May 12 and the 200th overall. The Destiny module antenna installation was deferred from the May 12 spacewalk.

Astronaut Peggy Whitson is pictured May 12, 2017, during the 200th spacewalk at the International Space Station. Credit: NASA

The relatively short EVA lasted a total of two hours and 46 minutes. It concluded at 10:06 a.m. EDT.

Overall this was the 201st spacewalk in support of the space station assembly, maintenance and upgrade. Spacewalkers have now spent a total of 1,250 hours and 41 minutes working outside the orbiting lab complex since its inception.

Spacewalk 201 was also the sixth spacewalk conducted from the Quest airlock in 2017 aboard the ISS.

The International Space Station with its prominent solar arrays and radiators attached to the truss structure was pictured May 2010 from space shuttle Atlantis. Credit: NASA

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

NASA Astronaut Peggy Whitson Sets US Space Endurance Record, Speaks to President Trump

NASA astronaut Peggy Whitson, currently living and working aboard the International Space Station, broke the record Monday for cumulative time spent in space by a U.S. astronaut – an occasion that was celebrated with a phone call from President Donald Trump, First Daughter Ivanka Trump, and fellow astronaut Kate Rubins. Credits: NASA TV

NASA Astronaut Peggy Whitson set the endurance record for time in space by a U.S, astronaut today, Monday, April 24, during her current stint of living and working aboard the International Space Station (ISS) along with her multinational crew of five astronauts and cosmonauts.

Furthermore Whitson received a long distance phone call of exuberant congratulations from President Donald Trump, First Daughter Ivanka Trump, and fellow astronaut Kate Rubins direct from the Oval Office in the White House to celebrate the momentous occasion.

“This is a very special day in the glorious history of American spaceflight!” said President Trump during the live phone call to the ISS broadcast on NASA TV.

As of today, Whitson exceeded 534 cumulative days in space by an American astronaut, breaking the record held by NASA astronaut Jeff Williams.

“Today Commander Whitson you have broken the record for the most total time spent in space by an American astronaut. 534 days and counting,” elaborated President Trump.

“That’s an incredible record to break. And on behalf of the nation and frankly the world I would like to congratulate you. That is really something!”

“You’re an incredible inspiration to us all.”

Trump noted that thousands of school students were listening in to the live broadcast which also served to promote students to study STEM subjects.

“Peggy is a phenomenal role model for young women, and all Americans, who are exploring or participating in STEM education programs and careers,” said President Trump.

“As I have said many times before, only by enlisting the full potential of women in our society will we be truly able to make America great again. When I signed the INSPIRE Women Act in February, I did so to ensure more women have access to STEM education and careers, and to ensure America continues to benefit from the contributions of trailblazers like Peggy.”

How does it feel to break the endurance record? Trump asked Whitson.

“It’s actually a huge honor to break a record like this, but it’s an honor for me basically to be representing all the folks at NASA who make this spaceflight possible and who make me setting this record feasible,” Whitson replied from orbit to Trump.

“And so it’s a very exciting time to be at NASA. We are all very much looking forward, as directed by your new NASA bill — we’re excited about the missions to Mars in the 2030s. And so we actually, physically, have hardware on the ground that’s being built for the SLS rocket that’s going to take us there.”

“It’s a very exciting time, and I’m so proud of the team.”

“We have over 200 investigations ongoing onboard the space station, and I just think that’s a phenomenal part of the day.”

NASA astronaut Jack Fischer is also serving aboard the station on his rookie flight and also took part in the phone call with President Trump.

Whitson is currently serving as Space Station Commander of Expedition 51. She most recently launched to the ISS on Nov 17, 2016 aboard a Russian Soyuz capsule from the Baikonur Cosmodrome in Kazakhstan, as part of a three person crew.

At the time of her Soyuz launch she had accumulated 377 total days in space.

She holds several other prestigious records as well. Whitson is the first woman to serve twice as space station commander.

Indeed in 2008 Whitson became the first woman ever to command the space station during her prior stay on Expedition 16 a decade ago. Her second stint as station commander began earlier this month on April 9.

Whitson also holds the record for most spacewalks by a female astronaut. Altogether she has accumulated 53 hours and 23 minutes of EVA time over eight spacewalks.

Overall, Expedition 51 involved her third long duration stay aboard the massive orbiting laboratory complex.

Seen here on a spacewalk in March 2017, NASA astronaut Peggy Whitson holds the record for most spacewalks conducted by a female astronaut. Credits: NASA

“This is an inspirational record Peggy is setting today, and she would be the first to tell you this is a record that’s absolutely made to be broken as we advance our knowledge and existence as both Americans and humans,” said NASA acting Administrator Robert Lightfoot, in a statement.

“The cutting-edge research and technology demonstrations on the International Space Station will help us go farther into our solar system and stay there longer, as we explore the mysteries of deep space first-hand. Congratulation to Peggy, and thank you for inspiring not only women, but all Americans to pursue STEM careers and become leaders.”

When she returns to Earth in September she will have accumulated some 666 days in space.

On her 2007 mission aboard the International Space Station, NASA astronaut Peggy Whitson, Expedition 16 commander, worked on the Capillary Flow Experiment (CFE), which observes the flow of fluid, in particular capillary phenomena, in microgravity. Credits: NASA

Trump made note of the science and commercial industrial work being carried out aboard the station.

“Many American entrepreneurs are racing into space. I have many friends that are so excited about space. They want to get involved in space from the standpoint of entrepreneurship and business,” said President Trump.

“And I’m sure that every student watching wants to know, what is next for Americans in space.”

Indeed the private SS John Glenn Cygnus cargo freighter just arrived at the ISS on Saturday, April 22, carrying nearly 4 tons or science experiments, hardware, parts and provisions.

Whitson was one of two ISS astronauts involved in capturing Cygnus with the Canadian built robotic arm for attachment to the stations Unity node.

Trump also mentioned his strong support for sending humans on a mission to Mars in the 2030s and for NASA’s development of the SLS heavy lift rocket and Orion deep space capsule.

“I’m very proud that I just signed a bill committing NASA to the aim of sending America astronauts to Mars. So we’ll do that. I think we’ll do it a lot sooner than we’re even thinking.”

“Well, we want to try and do it during my first term or, at worst, during my second term. So we’ll have to speed that up a little bit, okay?”

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Space Station Trio Touches Down on Earth as NASA’s Next Cargo Ship Targets Apr. 18 Blastoff

Expedition 50 Commander Shane Kimbrough of NASA, and Flight Engineers Sergey Ryzhikov and Andrey Borisenko of the Russian space agency Roscosmos, touched down southeast of the remote town of Dzhezkazgan in Kazakhstan at 7:20 a.m. EDT April 10, 2017 in their Soyuz MS-02 spacecraft. Photo Credit: (NASA/Bill Ingalls)

Comings and goings continue apace on the International Space Station! After living and working fruitfully for six months in space aboard the ISS, an international trio of astronauts and cosmonauts including NASA’s Shane Kimbrough departed the orbiting lab complex aboard their Soyuz capsule and plummeted back safely through the Earth’s atmosphere to a soft touchdown in Kazahkstan on Monday- as NASA meanwhile targets liftoff of the next US resupply ship a week from today.

These are busy times indeed with regular flights to low Earth orbit and back to maintain and enhance the scientific research aboard the multinationally built and funded million pound orbiting outpost.

ISS Expedition 50 came to a glorious end for Commander Shane Kimbrough of NASA and Flight Engineers Sergey Ryzhikov and Andrey Borisenko of the Russian space agency Roscosmos as they returned to Earth Monday, April 10 in Kazakhstan aboard their Soyuz spacecraft after spending 173 days aloft in the weightless environment of space.

With his return to Earth April 10, 2017, from a mission aboard the International Space Station, NASA astronaut Shane Kimbrough now has spent 189 days in space on two flights. Credits: NASA TV

The Russian Soyuz MS-02 capsule touched down safely by making a parachute assisted landing in Kazakhstan at approximately 7:20 a.m. EDT (5:20 p.m. Kazakhstan time).

The three person crew comprising Kimbrough, Ryzhikov and Andrey Borisenko landed southeast of the remote town of Dzhezkazgan in Kazakhstan.

Meanwhile as the trio were landing, NASA is targeting launch of the next commercial cargo ship for blastoff on April 18 with more than three tons of science and supplies to stock the station for the Expedition 51 crew.

Christened the ‘S.S. John Glenn’ to honor legendary NASA astronaut John Glenn – the first American to orbit the Earth back in February 1962 – the next Orbital ATK Cygnus cargo ship heading to the space station will launch on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.

Liftoff of the S.S. John Glenn from NASA commercial cargo provider Orbital ATK on their seventh commercial resupply services mission to the ISS is slated for 11 a.m. EDT Tuesday, April 18.

John Glenn was selected as one of NASA’s original seven Mercury astronauts chosen at the dawn of the space age in 1959. He recently passed away on December 8, 2016 at age 95.

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. Launch slated for April 18, 2017 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

During their time in orbit, the Expedition 50 crew members contributed to hundreds of experiments in biology, biotechnology, physical science and Earth science aboard the world-class orbiting laboratory.

“For example, the Microgravity Expanded Stem Cells investigation had crew members observe cell growth and other characteristics in microgravity. Results from this investigation could lead to the treatment of diseases and injury in space, and provide a way to improve stem cell production for medical therapies on Earth,” said NASA.

“The Tissue Regeneration-Bone Defect study, a U.S. National Laboratory investigation sponsored by the Center for the Advancement of Science in Space (CASIS) and the U.S. Army Medical Research and Materiel Command, studied what prevents vertebrates, such as rodents and humans, from regenerating lost bone and tissue, and how microgravity conditions impact the process. Results will provide a new understanding of the biological reasons behind a human’s inability to regrow a lost limb at the wound site, and could lead to new treatment options for the more than 30 percent of the patient population who do not respond to current options for chronic, non-healing wounds.”

The Soyuz MS-02 spacecraft is seen as it lands with Expedition 50 Commander Shane Kimbrough of NASA and Flight Engineers Sergey Ryzhikov and Andrey Borisenko of Roscosmos near the town of Zhezkazgan, Kazakhstan on Monday, April 10, 2017 (Kazakh time). Credit: NASA/Bill Ingalls

Kimbrough, Ryzhikov and Andrey Borisenko served as members of the Expedition 49 and 50 crews onboard the International Space Station during their 173 days in orbit.

During two flights Kimbrough has now amassed 189 days in space. During his two flights Borisenko now totals 337 days in space. Rookie Ryzhikov logged 173 days in space.

They leave behind another trio of crewmates who will continue as Expedition 51; namely NASA astronaut and new station commander Peggy Whitson, Oleg Novitskiy of Roscosmos and Thomas Pesquet of ESA (European Space Agency).

The next manned Soyuz launch will carry just two crewmembers. Due to Russian funding cutbacks only 1 cosmonaut will launch. The crew comprises Jack Fischer of NASA and Fyodor Yurchikhin of Roscosmos. They are scheduled to launch Thursday, April 20 from Baikonur, Kazakhstan.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Dragon Arrives at Space Station with Tons of Earth and Human Science Experiments

SpaceX’s Dragon CRS-10 cargo vehicle is attached to the International Space Station on Feb 23, 2017 after early morning capture by astronauts Shane Kimbrough and Thomas Pesquet using the robotic arm and subsequent berthing at Earth facing port on the Harmony module. It will stay for a month. Credit: NASA

KENNEDY SPACE CENTER, FL – A SpaceX Dragon supply ship jam packed with more than 2.5 tons of critical science gear, crew supplies and 40 mice successfully arrived this morning at the International Space Station (ISS) – where six humans from the US, Russia and France are living and working aboard.

Dragon reached the station four days after it was launched from the Kennedy Space Center (KSC) on Sunday, Feb. 19 on the first Falcon 9 rocket ever to blast off from historic launch pad 39A in a blaze of glory.

Astronauts Thomas Pesquet of ESA (European Space Agency) and station commander Shane Kimbrough of NASA deftly maneuvered the space station’s 57.7-foot (17.6-meter) Canadian-built Canadarm2 robotic arm to reach out and flawlessly capture the Dragon CRS-10 spacecraft at about 5:44 a.m. EST early Thursday, after it arrived at the station.

The SpaceX CRS-10 Dragon is pictured in the grips of the Canadarm2 shortly after its capture by astronauts Shane Kimbrough and Thomas Pesquet on Feb. 23, 2017. Credit: NASA TV

Pesquet and Kimbrough were working at the robotics work station inside the seven windowed Cupola module as they monitored Dragon’s approach for capture by the grappling snares on the terminus of the robotic arm this morning as the station was soaring over the northwest coast of Australia.

“Looks like we have a great Dragon capture,” said capcom astronaut Mike Hopkins.

“We want to congratulate all the teams working around the world for the successful arrival,” said Pesquet.

The million pound station is orbiting approximately 250 miles (400 km) above Earth.

SpaceX CRS-10 Dragon supply ship launched on Feb. 19, 2017 from NASA’s Kennedy Space Center in Florida successfully arrives at the International Space Station on Feb. 23, 2017 for capture and berthing at station port on the Harmony module. Credit: NASA

The commercial Dragon cargo freighter arrived about 16 minutes earlier than originally planned.

The duo were assisted by experienced NASA astronaut Peggy Whitson. The 57 year old Whitson will soon set a record for most time spent in space by an American on April 24.

The gumdrop shaped Dragon cargo freighter slowly and methodically approached the station and the capture point through the required approach corridor during the final stages of the orbital chase.

After hovering at the capture point in free drift at a distance of about 34 feet (11 m) from the orbiting outpost, the crew members extended the robotic arm and Dragon was successfully plucked from free space using Canardarm2 at the grapple fixture located on the side of the supply ship.

The entire thrilling approach and grappling sequence was broadcast live on NASA TV.

SpaceX Dragon arrives at the 30 meter hold point during final approach to International Space Station on Feb. 23, 2017 for capture and berthing at station port on the Harmony module. Credit: NASA

Robotics officers on the ground at the NASA’s Johnson Space Center then took over and berthed Dragon to the Earth facing port on the Harmony module at about 8 a.m. as the mated craft were soaring over central America.

16 latches and bolts on the stations Common Berthing Mechanism (CBM) will hold Dragon firmly in place for a hard mate to the stations Harmony module.

4 gangs of 4 bolts were driven into place with ground commands from the robotics officer to firmly bolt Dragon to the nadir port on Harmony.

The second stage capture and Dragon installation was confrmed at 8:12 a.m. Feb 23 as the craft were flying over the US East Coast.

“Today’s’ re-rendezvous has gone by the book,” said NASA commentator Rob Navias.

“Dragon systems are in excellent shape.”

“There have been no issues and everything has gone as planned.”

“Today was smooth sailing as Dragon arrived below the space station and maneuvered its way through a carefully choreographed procedure to the grapple position for rendezvous and capture.”

“Dragon is now firmly attached to the International Space Station and the crew will begin unloading critical science payloads and supplies this afternoon.”

“Today’s’ re-rendezvous has gone by the book,” said NASA commentator Rob Navias.

“Dragon systems are in excellent shape.”

“There have been no issues and everything has gone as planned.”

Yesterday’s rendezvous was automatically aborted when a bad bit of navigational data was uplinked to Dragons relative GPS navigation system as it was about 0.7 miles below the station.

“The Dragon’s computers received an incorrect navigational update, triggering an automatic wave off. Dragon was sent on a “racetrack” trajectory in front of, above and behind the station for today’s second rendezvous attempt.”

There was never any danger to the crew, space station or Dragon. It merely arrived a day later than planned as it is fully equipped to do if needed.

The SpaceX Dragon was successfully installed to the Harmony module a few hours after it was captured with the Canadarm2 by the crew on Feb 23, 2017. This artists concept shows the location of several visiting vehicles including Dragon, Soyuz and BEAM expandable module. Credit: NASA

CRS-10 counts as the company’s tenth scheduled flight to deliver supplies, science experiments and technology demonstrations to the International Space Station (ISS).

The Dragon is the first of two cargo craft arriving at the station over two consecutive days.

The unpiloted Russian Progress 66 supply ship launched yesterday from Baikonur is slated to arrive early Friday morning with 2.9 tons of supplies. It will automatically dock at the Pirs docking module at about 3:45 a.m., with a trio of Russian cosmonauts monitoring all the action.

After conducting leak checks, the crew plans to open the hatch to Dragon later today.

They will quickly begin removing the highest priority science investigations and gear first.

Dragon will remain at the station for about 30 days.

SpaceX Falcon 9 rocket and Dragon cargo ship rests horizontal atop Launch Complex 39A at the Kennedy Space Center on 17 Feb 2017 as work crews use the access room to load ‘late stow’ science experiments aboard Dragon – as seen from inside the pad perimeter. This is the first rocket launched from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission occurred on 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com

1000 pounds of ‘late stow’ experiments were loaded the day before the originally planned Feb. 18 liftoff of the SpaceX Falcon 9 rocket.

Dragon was successfully launched from NASA’s Kennedy Space Center atop the 213-foot-tall (65-meter) SpaceX Falcon 9 rocket at 9:38 a.m. EST on Feb. 19, 2017 from historic Launch Complex 39A to low Earth orbit.

Raindrops keep falling on the lens, as inaugural SpaceX Falcon 9/Dragon disappears into the low hanging rain clouds at NASA’s Kennedy Space Center after liftoff from pad 39A on Feb. 19, 2017. Dragon CRS-10 resupply mission is delivering over 5000 pounds of science and supplies to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Dragon is carrying more than 5500 pounds of equipment, gear, food, crew supplies, hardware and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload in support of the Expedition 50 and 51 crew members.

SAGE III will measure stratospheric ozone, aerosols, and other trace gases by locking onto the sun or moon and scanning a thin profile of the atmosphere. It is one of NASA’s longest running earth science programs.

Engineers at work processing NASA’s Stratospheric Aerosol and Gas Experiment III, or SAGE III instrument inside the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida during exclusive visit by Ken Kremer/Universe Today in December 2016. Technicians are working in a super-clean ‘tent’ built in the SSPF high bay to protect SAGE III’s special optics and process the Ozone mapper for upcoming launch on the SpaceX CRS-10 Dragon cargo flight to the International Space Station in early 2017. Credit: Ken Kremer/kenkremer.com

The LIS lightning mapper will measure the amount, rate and energy of lightning as it strikes around the world from the altitude of the ISS as it orbits Earth. Its data will complement that from the recently orbited GLM lighting mapper lofted to geosynchronous aboard the NASA/NOAA GOES-R spacecraft instrument.

NASA’s RAVEN experiment will test autonomous docking technologies for spacecraft.

SAGE III and RAVEN were stowed in the Dragon’s unpressurized truck.

The research supplies and equipment brought up by Dragon will support over 250 scientific investigations to advance knowledge about the medical, psychological and biomedical challenges astronauts face during long-duration spaceflight.

The 40 mice will be used in a wound healing experiment to test therapies in microgravity.

An advanced plant growth habitat will launch soon to test better technologies for growing crops in space that could contribute to astronauts nutrition on long duration spaceflights.

SpaceX Dragon CRS-10 Cargo manifest from NASA:

TOTAL CARGO: 5489.5 lbs. / 2490 kg

TOTAL PRESSURIZED CARGO WITH PACKAGING: 3373.1 lbs. / 1530 kg

• Science Investigations 1613.8 lbs. / 732 kg
• Crew Supplies 652.6 lbs. / 296 kg
• Vehicle Hardware 842.2 lbs. / 382 kg
• Spacewalk Equipment 22.0 lbs. / 10 kg
• Computer Resources 24.2 lbs. / 11 kg
• Russian Hardware 48.5 lbs. / 22 kg

UNPRESSURIZED

• SAGE-III & STP-H5 Lightning Imaging Sensor 2116.4 lbs. / 960 kg

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite CRS-10 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer