Strait of Hormuz Shot from the International Space Station – World Strategic Flashpoint

[/caption]A beautiful and peaceful Christmas-time picture of The Strait of Hormuz was shot from the International Space Station (ISS) soaring some 250 miles (400 kilometers) overhead on Christmas Eve, 24 Dec 2011.

Today, the economically vital Strait of Hormuz is a ‘Flashpoint of Tension’ between Iran and the US and much of the rest of the world community because of official threats by Iranian government officials to shut the highly strategic waterway to crude oil tankers that transport the lifeblood of the world’s economy.

The timely image above was just tweeted by NASA Astronaut Ron Garan who wrote; “Interesting peaceful pic of the #StraightofHormuz #FromSpace taken on Christmas Eve (12/24/11) from the #ISS”. Garan served aboard the ISS from April to September 2011 as a member of the Expedition 27/28 crews.

The Strait of Hormuz lies at the mouth of the Persian Gulf between Iran and the Arabian Peninsula and is a major chokehold of the world’s energy consumption.

At its narrowest point, the Strait is only 34 miles (54 kilometers) wide. The vital shipping lanes span barely 2 miles (3 kilometers) in width in each direction (see maps below).

See more ISS photos of the Persian Gulf region and the Strait, below.

Image of the Strait of Hormuz and Persian Gulf region
Taken from the International Space Station on Sept. 30, 2003. United Arab Emirates, Oman and Saudi Arabia at left, Iran at right. Credit: NASA

Each and every day, about 20% of the world’s daily petroleum consumption is shipped through the extremely narrow channel on gigantic Oil tankers. Any disruption of petroleum shipments would instantly send crude oil prices skyrocketing to exhorbitant levels that could wreak havoc and rapidly lead to a worldwide economic depression and a devastating war between Iran and the US and its allies.

Red arrow indicates location of the Strait of Hormuz in relation to the Arabian Peninsula.

In recent days Iranian boats have approached US Naval warships at high speeds while they were heading through the Strait of Hormuz – playing a potentially deadly game of cat and mouse that could spin out of control in a single misstep, even if unintentional.

Clashes would easily disrupt the crude oil tanker shipping traffic.

Several Iranian speedboats came within about 800 yards of the US vessels in recent days as a war of words has flared over oil and Iran’s nuclear program as tensions escalate.

Video Caption: Iranian speedboats closely approach US Navy ships at high speed in the Strait of Hormuz on Jan. 6, 2012. Credit: US Dept of Defense

The US and allied fleet operates in the Gulf region to protect the oil shipments and the oil installations of a number of Arab countries including Saudi Arabia.

Persian Gulf and Strait of Hormuz from cargo bay of NASA Space Shuttle - May 27, 2000. Credit: NASA

Map of Strait of Hormuz showing political boundaries and narrow maritime shipping lanes. Wikipedia

An international crew of six men from the US, Russia and Holland are currently in residence aboard the ISS running science experiments.

ISS Expedition 30 Commander and US astronaut Dan Burbank snapped gorgeous photos of Comet Lovejoy during this Christmas season – look here.

Strait of Hormuz and Persian Gulf region

Look here for dazzling photos of the ISS crossing the Moon – shot just days ago from NASA’s Johnson Space Center in Houston

Read Ken’s recent features about the ISS here:
Dazzling Photos of the International Space Station Crossing the Moon!
Solar Powered Dragon gets Wings for Station Soar
Absolutely Spectacular Photos of Comet Lovejoy from the Space Station
NASA announces Feb. 7 launch for 1st SpaceX Docking to ISS

No Nukes? NASA’s Plutonium Production Predicament


Mars Science Laboratory, launched three days ago on the morning of Saturday, November 26, is currently on its way to the Red Planet – a journey that will take nearly nine months. When it arrives the first week of August 2012, MSL will begin investigating the soil and atmosphere within Gale Crater, searching for the faintest hints of past life.  And unlike the previous rovers which ran on solar energy, MSL will be nuclear-powered, generating its energy through the decay of nearly 8 pounds of plutonium-238. This will potentially keep the next-generation rover running for years… but what will fuel future exploration missions now that NASA may no longer be able to fund the production of plutonium?

Pu-238 is a non-weapons-grade isotope of the radioactive element, used by NASA for over 50 years to fuel exploration spacecraft. Voyagers, Galileo, Cassini… all had radioisotope thermoelectric generators (RTGs) that generated power via Pu-238. But the substance has not been in production in the US since the late 1980s; all Pu-238 has since been produced in Russia. But now there’s only enough left for one or two more missions and the 2012 budget plan does not yet allot funding for the Department of Energy to continue production.

Where will future fuel come from? How will NASA power its next lineup of robotic explorers? (And why aren’t more people concerned about this?)

Amateur astronomer, teacher and blogger David Dickinson went into detail about this conundrum in an informative article written earlier this year. Here are some excerpts from his post:


When leaving our fair planet, mass is everything. Space being a harsh place, you must bring nearly everything you need, including fuel, with you. And yes, more fuel means more mass, means more fuel, means… well, you get the idea. One way around this is to use available solar energy for power generation, but this only works well in the inner solar system. Take a look at the solar panels on the Juno spacecraft bound for Jupiter next month… those things have to be huge in order to take advantage of the relatively feeble solar wattage available to it… this is all because of our friend the inverse square law which governs all things electromagnetic, light included.

Curiosity's MMRTG (about 15 inches high.) Credit: NASA / Frankie Martin

To operate in the environs of deep space, you need a dependable power source. To compound problems, any prospective surface operations on the Moon or Mars must be able to utilize energy for long periods of sun-less operation; a lunar outpost would face nights that are about two Earth weeks long, for example. To this end, NASA has historically used Radioisotope Thermal Generators (RTGs) as an electric “power plant” for long term space missions. These provide a lightweight, long-term source of fuel, generating from 20-300 watts of electricity. Most are about the size of a small person, and the first prototypes flew on the Transit-4A & 5BN1/2 spacecraft in the early 60’s. The Pioneer, Voyager, New Horizons, Galileo and Cassini spacecraft all sport Pu238 powered RTGs. The Viking 1 and 2 spacecraft also had RTGs, as did the long term Apollo Lunar Surface Experiments Package (ALSEP) experiments that Apollo astronauts placed on the Moon. An ambitious sample return mission to the planet Pluto was even proposed in 2003 that would have utilized a small nuclear engine.

Video: what is plutonium really like?

A glowing cake of plutonium. (Department of Energy)

David goes on to mention the undeniable dangers of plutonium…

Plutonium is nasty stuff. It is a strong alpha-emitter and a highly toxic metal. If inhaled, it exposes lung tissue to a very high local radiation dose with the attending risk of cancer. If ingested, some forms of plutonium accumulate in our bones where it can damage the body’s blood-forming mechanism and wreck havoc with DNA. NASA had historically pegged a chance of a launch failure of the New Horizons spacecraft at 350-to-1 against, which even then wouldn’t necessarily rupture the RTG and release the contained 11 kilograms of plutonium dioxide into the environment. Sampling conducted around the South Pacific resting place of the aforementioned Apollo 13 LM re-entry of the ascent stage of the Lunar Module, for example, suggests that the reentry of the RTG did NOT rupture the container, as no plutonium contamination has ever been found.

Yet the dangers of nuclear power often overshadow its relative safety and unmistakable benefit:

The black swan events such as Three Mile Island, Chernobyl and Fukushima have served to demonize all things nuclear, much like the view that 19thcentury citizens had of electricity. Never mind that coal-fired plants put many times the equivalent of radioactive contamination into the atmosphere in the form of lead210, polonium214, thorium and radon gases, every day. Safety detectors at nuclear plants are often triggered during temperature inversions due to nearby coal plant emissions… radiation was part of our environment even before the Cold War and is here to stay. To quote Carl Sagan, “Space travel is one of the best uses of nuclear weapons that I can think of…”

Yet here we are, with a definite end in sight to the supply of nuclear “weapons” needed to power space travel…

Currently, NASA faces a dilemma that will put a severe damper on outer solar system exploration in the coming decade. As mentioned, current plutonium reserves stand at about enough for the Mars Science Laboratory Curiosity, which will contain 4.8kilograms of plutonium dioxide, and one last large & and perhaps one small outer solar system mission. MSL utilizes a new generation MMRTG (the “MM” stands for Multi-Mission) designed by Boeing that will produce 125 watts for up to 14 years. But the production of new plutonium would be difficult. Restart of the plutonium supply-line would be a lengthy process, and take perhaps a decade. Other nuclear based alternatives do indeed exist, but not without a penalty either in low thermal activity, volatility, expense in production, or short half life.

The implications of this factor may be grim for both manned and unmanned space travel to the outer solar system. Juxtaposed against at what the recent 2011 Decadal Survey for Planetary Exploration proposes, we’ll be lucky to see many of those ambitious “Battlestar Galactica” –style outer solar system missions come to pass.

Landers, blimps and submersibles on Europa, Titan, and Enceladus will all operate well out of the Sun’s domain and will need said nuclear power plants to get the job done… contrast this with the European Space Agency’s Huygens probe, which landed on Titan after being released from NASA’s Cassini spacecraft in 2004, which operated for scant hours on battery power before succumbing to the -179.5 C° temps that represent a nice balmy day on the Saturnian moon.

So, what’s a space-faring civilization to do? Certainly, the “not going into space” option is not one we want on the table, and warp or Faster-Than-Light drives a la every bad science fiction flick are nowhere in the immediate future. In [my] highly opinionated view, NASA has the following options:

Exploit other RTG sources at penalty. As mentioned previously, other nuclear sources in the form of Plutonium, Thorium, and Curium isotopes do exist and could be conceivably incorporated into RTGs; all, however, have problems. Some have unfavorable half-lives; others release too little energy or hazardous penetrating gamma-rays. Plutonium238 has high energy output throughout an appreciable life span, and its alpha particle emissions can be easily contained.

Design innovative new technologies. Solar cell technology has come a long way in recent years, making perhaps exploration out to the orbit of Jupiter is do-able with enough collection area. The plucky Spirit and Opportunity Mars rovers(which did contain Curium isotopes in their spectrometers!) made do well past their respective warranty dates using solar cells, and NASA’s Dawn spacecraft currently orbiting the asteroid Vesta sports an innovative ion-drive technology.

Push to restart plutonium production. Again, it is not that likely or even feasible that this will come to pass in today’s financially strapped post-Cold War environment. Other countries, such as India and China are looking to “go nuclear” to break their dependence on oil, but it would take some time for any trickle-down plutonium to reach the launch pad. Also, power reactors are not good producers of Pu238. The dedicated production of Pu238 requires either high neutron flux reactors or specialized “fast” reactors specifically designed for the production of trans-uranium isotopes…

Based on the realities of nuclear materials production the levels of funding for Pu238 production restart are frighteningly small. NASA must rely on the DOE for the infrastructure and knowledge necessary and solutions to the problem must fit the realities within both agencies.

And that’s the grim reality of a brave new plutonium-free world that faces NASA; perhaps the solution will come as a combination of some or all of the above. The next decade will be fraught with crisis and opportunity… plutonium gives us a kind of Promethean bargain with its use; we can either build weapons and kill ourselves with it, or we can inherit the stars.

Diagram of an RTG. (Source: The Encyclopedia of Science)


Thanks to David Dickinson for the use of his excellent article; be sure to read the full version on his Astro Guyz site here (and follow David on Twitter @astroguyz.) Also check out this article by Emily Lakdawalla of The Planetary Society on how the RTG unit for Curiosity was made.

“There are some people who legitimately feel like this is simply not a priority, that there’s not enough money and it’s not their problem. But I think if you try to step back and look at the forest and not just the individual trees, this is one of the things that has helped drive us to become a technological powerhouse. What we’ve done with robotic space exploration is something that people not just in the U.S., but around the world, can look up to.”

– Ralph McNutt, planetary scientist at Johns Hopkins University’s Applied Physics Laboratory (APL)

( Top image credit © 2011 Theodore Gray; used with permission.)

What is Plutonium?

Periodic Table of Elements


The name itself conjures up imagines of mini nukes and sophisticated space-age gadgets doesn’t it? Well for some people it does. For others, Plutonium (Pu, atomic number of 94 on the periodic table of elements) spawns images of nuclear reactors, atomic energy and nuclear waste. All of these are true to an extent, but the reality behind this radioactive element is understandably more complex. For starters, plutonium is a silvery white actinide metal that is radioactive, and hence quite dangerous when exposed to living tissue. It is one of the key ingredients in the making of atomic weapons, but is also produced in nuclear reactors as a result of slow fission. There are also several isotopes of the element, but for our purposes, the most important is Plutonium-239, a fissile isotope that is used for both nuclear power and weapons and has a half-life of 24,100 years.

Plutonium-238 was first discovered as an element on Dec.14th1940, and then chemically identified on February 23rd 1941through the deuteron bombardment of Uranium in a cyclotron by Glenn T. Seaborg and his team of scientists, working out of the University of California in Berkley. The team submitted a paper publishing their findings; however, this paper was retracted when it became clear that Plutonium-239 was a fissile material that could be useful in the construction of an atomic weapon. At this time, the US was deep into the development of an atomic bomb (aka. the Manhattan Project) because it was believed that Germany was doing the same. For this reason, publication of Seaborg’s work was delayed until 1946, a year after the Second World War ended and security surrounding atomic research was no longer a concern. Seaborg decided to name the element after Pluto because of the recent discovery of element 93, Neptunium, and felt that element 94 should accordingly be named after the next planet in the Solar System.

Towards the end of WWII, two nuclear reactors were created which would produce the plutonium used in the construction of “Trinity”, “Fat Man” and other atomic weapons. These were the X-10 Graphite Reactor facility in Oak Ridge (which later became the Oak Ridge National Laboratory) and the Hanford B reactor (built in 1943 and 45 respectively). Large stockpiles were subsequently built up by the US and USSR during the Cold War, and have since become the focus of nuclear proliferation treaty concerns. Today, it is estimated that several tonnes of plutonium isotopes exist in our biosphere, the result of atomic testing during the 1950’s and 60’s.

We have written many articles about Plutonium for Universe Today. Here’s an article about Plutonium shortage in NASA, and here’s an article about Plutonium – 238.

If you’d like more info on Plutonium, check out Wikipedia – Plutonium, and here’s a link to World Nuclear page about Plutonium.

We’ve also recorded an entire episode of Astronomy Cast all about Nuclear Forces. Listen here, Episode 105: The Strong and Weak Nuclear Forces.


Mini Nuclear Reactors Could Power Space Colonies

Growing up on Star Trek, I was always told that space was the final frontier. What they never told me was that space is about as friendly to the human body as being microwaved alive in a frozen tundra–in essence, shelter is a necessity.

Like any Earthen home or building, an off world shelter on the Moon or Mars will need energy to keep its residents comfortable (not to mention alive), and power outages of any sort will not be tolerated–unless a person desires to be radiated and frozen (which is probably not a great way to “kick the bucket”).

While some may look towards solar power to help keep the lights on and the heat flowing, it may be wiser instead to look at an upcoming “fission battery” from Hyperion Power Generation to power future colonies on the Moon, Mars, and perhaps an plasma rocket powered starship as well.

Originally created by Dr. Otis Peterson while on staff at the Los Alamos National Laboratory in New Mexico, Hyperion Power Generation (which I’ll call HPG for short) has licensed Dr. Peterson’s miniature nuclear reactor which are actually small enough to fit inside a decent sized hot tub.

Despite their small stature (being 1.5 meters by 2.5 meters), one of these mini-reactors could provide enough energy to power 20,000 average sized American homes (or 70 MW’s of thermal energy in geek speak) and can last up to ten years.

Since HPG is designing these mini-nuclear reactors to require little human assistance (the “little” having to do with burying the reactors underground), these “nuclear batteries” would enable NASA (or a wealthy space company) to power an outpost on the Moon or Mars without having to rely upon the Sun’s rays–at least as a primary source for power.

HPG’s mini-reactors could also help power future star ships heading towards Jupiter or Saturn (or even beyond), providing enough energy to not only keep the humans on board alive and comfortable, but provide enough thrust via plasma rockets as well.

Scheduled to be released in 2013, these mini-reactors are priced at around $50 million each, which probably puts it outside the price range of the average private space corporation.

Despite the cost, it may be wise for NASA, the European Space Agency, Japan, India and (if the US is in a really good trusting mood) China to consider installing one (or several) of these mini-reactors for their respective bases, as it could enable humanity to actually do what has been depicted in scifi films and television shows–seek out new homes on new worlds and spread ourselves throughout the universe.

Source: Hyperion Power Generation, Inc., Image Credit: NASA