Nucleosynthesis

‘Nucleo-‘ means ‘to do with nuclei’; ‘synthesis’ means ‘to make’, so nucleosynthesis is the creation of (new) atomic nuclei.

In astronomy – and astrophysics and cosmology – there are two main kinds of nucleosynthesis, Big Bang nucleosynthesis (BBN), and stellar nucleosynthesis.

In the amazingly successful set of theories which are popularly called the Big Bang theory, the early universe was very dense, and very hot. As it expanded, it cooled, and the quark-gluon plasma ‘froze’ into neutrons and protons (and other hadrons, but their role in BBN was marginal), which interacted furiously … lots and lots of nuclear reactions. The universe continued to cool, and soon became too cold for any further nuclear reactions … the unstable isotopes left then decayed, as did the neutrons not already in some nucleus or other. Most matter was then hydrogen (actually just protons; the electrons were not captured to form atoms until much later), and helium-4 (alpha particles) … with a sprinkling of deuterium, a dash of helium-3, and a trace of lithium-7.

That’s BBN.

The atoms in your body – apart from the hydrogen – were all made in stars … by stellar nucleosynthesis.

Stars on the main sequence get the energy they shine by from nuclear reactions in their cores; off the main sequence, the energy comes from nuclear reactions in a shell (or more than one shell) around the core. There are several different nuclear reaction cycles, or processes (e.g. triple alpha, s process, proton-proton chain, CNO cycle), but the end result is the fusion of hydrogen (and helium) to produce carbon, nitrogen, oxygen, … and the iron group (iron, cobalt, nickel). In the red giant phase of a star’s life, much of this matter ends up in the interstellar medium … and one day in your body.

There are other ways new nuclei can be created, in the universe (other than BBN and stellar nucleosynthesis); for example, when a high energy particle (a cosmic ray) collides with a nucleus in the interstellar medium (or the Earth’s atmosphere), it breaks it into two or more pieces (this process is called cosmic ray spallation). This produces most of the lithium (apart from the BBN 7Li), beryllium, and boron.

And one more: in a supernova, especially a core collapse supernova, huge quantities of new nuclei are synthesized, very quickly, in the nuclear reactions triggered by the flood of neutrons. This ‘r process’, as it is called (actually there’s more than one) produces most of the elements heavier than the iron group (copper to uranium), directly or by radioactive decay of unstable isotopes produced directly.

Like to learn more? Here are a few links that might interest you: Nucleosynthesis (NASA’s Cosmicopia), Big Bang Nucleosynthesis (Martin White, University of California, Berkeley), and Stellar Nucleosynthesis (Ohio University).

Plenty of Universe Today stories on this topic too; for example Stars at Milky Way Core ‘Exhale’ Carbon, Oxygen, Astronomers Simulate the First Stars Formed After the Big Bang, and Neutron Stars Have Crusts of Super-Steel.

Check out this Astronomy Cast episode, tailor-made for this Guide to Space article: Nucleosynthesis: Elements from Stars.

Sources:
NASA
Wikipedia
UC-Berkeley

Alpha Particle

An alpha particle is a particle made up of two protons and two neutrons. Since this configuration is similar to that of a helium nucleus, it’s often referred to as a helium nucleus. The term is commonly used in nuclear physics, and is one of the three particles commonly emitted during a radioactive decay, i.e., alpha, beta, and gamma particles.

Alpha particles gained prominence during the early days of particle physics when scientists used them as projectiles to bombard certain targets. One of the most widely celebrated experiments that made use of alpha particles was that of Ernest Rutherford’s that led to the discovery of the atom’s structure.

Using alpha particles as projectiles and gold foils as targets, Rutherford was able to come to the conclusion that atoms were made up of very dense positively charged cores with the much lighter negatively-charged electrons orbiting around it. His conclusion was based on the observation that the trajectories of the alpha particles were slightly deviated (as expected) at most times but in rare instances bounced off like ping-pong balls thrown against a wall.

The alpha particles went through the gold foils unhindered when they passed through the large but sparsely filled region around the nucleus. However, when, during much rarer instances, they happened to collide head on or even came close to the very dense and positively charged nucleus, they were deflected at very wide angles.

Through this information, there was no other option but for Rutherford to conclude that the atom must have a very dense nucleus which is very much smaller compared to the entire atom.

In terms of atomic proportions, alpha particles are considered very massive because of the existence of the two protons and two neutrons. Furthermore, they are also positively charged due to the protons. As such, they can easily wreak havoc to most targets. That is, they have high ionization properties.

Alpha particles are released during alpha decay processes which can happen most especially to ultra-heavy nuclei like uranium, thorium, actinium, and radium. Since they’re not as fast (due mainly to their masses) as betas and gammas, they can’t travel across large distances and can be easily stopped by a piece of paper or human skin.

However, again because of their huge masses, alpha particles can be very dangerous whenever they can somehow enter the body through inhalation or ingestion. Minus that possibility, you don’t have to worry much about this heavyweight of a particle.

Universe Today has some interesting related content that you might want to read. Want to know about how the Opportunity rover got sidelined by a charged particle hit? And here’s an article about alpha radiation.

There’s more about it at NASA. Here are a couple of sources there:

Here are two episodes at Astronomy Cast that you might want to check out as well: