Navy Researchers Put Dark Lightning to the SWORD

Discovered “by accident” by NASA’s Fermi Gamma-ray Space Telescope in 2010, dark lightning is a surprisingly powerful — yet invisible — by-product of thunderstorms in Earth’s atmosphere. Like regular lightning, dark lightning is the result of a natural process of charged particles within storm clouds trying to cancel out opposing charges. Unlike normal lightning, though, dark lightning is invisible to our eyes and doesn’t radiate heat or light — instead, it releases bursts of gamma radiation.

What’s more, these gamma-ray outbursts originate at relatively low altitudes well within the storm clouds themselves. This means that airplane pilots and passengers flying through thunderstorms may be getting exposed to gamma rays from dark lightning, which are energetic enough to pass through the hull of an aircraft… as well as anything or anyone inside it. To find out how such exposure to dark lightning could affect air travelers, the U.S. Naval Research Laboratory (NRL) is conducting computer modeling tests using their SoftWare for the Optimization of Radiation Detectors — SWORD, for short.

Terrestrial Gamma-ray Flashes (TGFs) are extremely intense, sub-millisecond bursts of gamma rays and particle beams of matter and anti-matter. First identified in 1994, they are associated with strong thunderstorms and lightning, although scientists do not fully understand the details of the relationship to lightning. The latest theoretical models of TGFs suggest that the particle accelerator that creates the gamma rays is located deep within the atmosphere, at altitudes between six and ten miles, inside thunderclouds and within reach of civilian and military aircraft.

These models also suggest that the particle beams are intense enough to distort and collapse the electric field within thunderstorms and may, therefore, play an important role in regulating the production of visible lightning. Unlike visible lightning, TGF beams are sufficiently broad — perhaps about half a mile wide at the top of the thunderstorm — that they do not create a hot plasma channel and optical flash; hence the name, “dark lightning.”

A team of NRL Space Science Division researchers, led by Dr. J. Eric Grove of the High Energy Space Environment (HESE) Branch, is studying the radiation environment in the vicinity of thunderstorms and dark lightning flashes. Using the Calorimeter built by NRL on NASA’s Fermi Gamma-ray Space Telescope they are measuring the energy content of dark lightning and, for the first time, using gamma rays to geolocate the flashes.

As a next step, Dr. Chul Gwon of the HESE Branch is using NRL’s SoftWare for the Optimization of Radiation Detectors (SWORD) to create the first-ever simulations of a dark lightning flash striking a Boeing 737. He can calculate the radiation dosage to the passengers and crew from these Monte Carlo simulations. Previous estimates have indicated it could be as high as the equivalent of hundreds of chest X-rays, depending on the intensity of the flash and the distance to the source.

Simulation of a Boeing 737 struck by dark lightning. Green tracks show the paths of gamma rays from the dark flash as they enter the aircraft from below.   (Credit: U.S. Naval Research Laboratory)
Simulation of a Boeing 737 struck by dark lightning. Green tracks show the paths of gamma rays from the dark flash as they enter the aircraft from below.
(Credit: U.S. Naval Research Laboratory)

SWORD simulations allow researchers to study in detail the effects of variation in intensity, spectrum, and geometry of the flash. Dr. Grover’s team is now assembling detectors that will be flown on balloons and specialized aircraft into thunderstorms to measure the gamma ray flux in situ. The first balloon flights are scheduled to take place this summer.

Source: NRL News

Navy Scientists Spot New Solar Structures


There’s something new under the Sun… well, just above the Sun, actually. Scientists at the Naval Research Laboratory have spotted structures in the Sun’s super-hot corona that may shed some light on the way its magnetic fields evolve — especially near the edges of vast, wind-spewing coronal holes.

Coronal holes are regions where the Sun’s magnetic field doesn’t loop back down but rather streams outward into space. Appearing dark in images captured in ultraviolet wavelengths, these holes in the corona allow solar material to flow directly out into the solar system, in many cases doubling the normal rate of the solar wind.

Recently witnessed by NRL researchers using NASA’s SDO and STEREO solar-observing spacecraft, features called coronal cells exist at the boundaries of coronal holes and may be closely associated with their formation and behavior.

The coronal cells are plumes of magnetic activity that stream upward from the Sun, occurring in clusters. Likened to “candles on a birthday cake”, the incredibly hot (1 million K) plumes extend outwards, punching though the lower corona.

Seen near the center of the Sun’s disk, the cells appear structurally similar to granules — short-lived areas of rising and falling solar material on the Sun’s photosphere — but seen from an angle via STEREO, the cells were witnessed to be much larger, elongated and extending higher into the Sun’s atmosphere. For comparison, granules are typically about 1,000 km in diameter while the coronal cells have been measured at 30,000 km across.

“We think the coronal cells look like flames shooting up, like candles on a birthday cake,” said Neil Sheeley, a solar scientist at the Naval Research Laboratory in Washington, D.C. “When you see them from the side, they look like flames. When you look at them straight down they look like cells. And we had a great way of checking this out, because we could look at them from the top and from the side at the same time using observations from SDO, STEREO-A, and STEREO-B.”

Watch a video below of cells made from images acquired by STEREO-B… note how their elongated structure becomes evident as the cells rotate closer to the Sun’s limb.

NRL researchers also noted that the coronal cells appeared when adjacent coronal holes closed and disappeared when the holes opened, suggesting that the holes and cells share the same magnetic structure. In addition, the coronal cells were seen to disappear when a solar filament would erupt nearby, being “extinguished” as the cooler strand of solar material moved across them. Once the filament passed, the cells reformed — again, indicating a direct magnetic association.

The coronal cells were also identified in earlier images from ESA and NASA’s SOHO and Japan’s Hinode spacecraft.

It’s hoped that further study of these candle-like structures will lead to more knowledge of our star’s complex magnetic field and the effects it has on space weather and geomagnetic activity experienced here on Earth.

Read the press release from the Naval Research Laboratory here, and on NASA’s STEREO site here.