Will Aurora Strike Tonight? Here’s What to Expect

(Scroll down for latest update)

Auroras showed up as forecast last night beginning around nightfall and lasting until about 1 a.m. CDT this morning. Then the action stopped. At peak, the Kp index dinged the bell at “5” (minor geogmagnetic storm) for about 6 hours as the incoming shock from the arrival of the solar blast rattled Earth’s magnetosphere. It wasn’t a particularly bright aurora and had to compete with moonlight, so many of you may not have seen it. You needn’t worry. A much stronger G3 geomagnetic storm from the second Earth-directed coronal mass ejection (CME) remains in the forecast for tonight. 

 

Plot showing the Kp index of magnetic activity high in the Earth's magnetic domain called the magnetosphere. The two red bars show the Kp at '5' last night and early this morning (dotted line represents 0 UT or 7 p.m. CDT). Inset is the current detailed forecast in 3-hour increments. Credit: NOAA
Plot showing the Kp index of magnetic activity high in the Earth’s magnetic domain called the magnetosphere. The two red bars show the Kp at ‘5’ last night and early this morning (dotted line represents 0 UT or 7 p.m. CDT). Inset is the current detailed forecast in Universal Time (Greenwich Time) in 3-hour increments. Credit: NOAA

Activity should begin right at nightfall and peak between 10 p.m. and 1 a.m. Central Daylight Time. The best place to observe the show is from a location well away from city lights with a good view of the northern sky. Auroras are notoriously fickle, but if the NOAA space forecasting crew is on the money, flickering lights should be visible as far south as Illinois and Kansas. The storm also has the potential to heat and expand the outer limits of Earth’s atmosphere enough to cause additional drag on low-Earth-orbiting (LEO) satellites. High-frequency radio transmissions like shortwave radio may be reduced to static particularly on paths crossing through the polar regions.

Earth’s magnetic bubble, generated by motions within its iron-nickel core and shaped by the solar wind, is called the magnetosphere. It extends some 40,000 miles forward of the planet and more than 3.9 million miles in the tailward direction. Credit: NASA
Earth’s magnetic bubble, generated by motions within its iron-nickel core and shaped by the solar wind, is called the magnetosphere. It extends some 40,000 miles forward of the planet and more than 3.9 million miles in the tailward direction. Most of the time it sheds particle blasts from the sun called coronal mass ejections, but occasionally one makes it past our defenses and we get an auroral treat. Credit: NASA

If you study the inset box in the illustration above, you can see that from 21-00UT (4 -7 p.m. Central time) the index jumps quickly form “3” to “6” as the blast from that second, stronger X-class flare (September 10) slams into our magnetosphere. Assuming the magnetic field it carries points southward, it should link into our planet’s northward-pointing field and wreak beautiful havoc. A G2 storm continues through 10 p.m. and then elevates to Kp 7 or G3 storm between 10 p.m. and 1 a.m. before subsiding slightly in the wee hours before dawn. The Kp index measures how disturbed Earth’s magnetic field is on a 9-point scale and is compiled every 3 hours by a network of magnetic observatories on the planet.

A lovely rayed arc reflected in Caribou Lake north of Duluth, Minn. on September 11, 2014. Credit: Guy Sander
A lovely rayed arc reflected in Caribou Lake north of Duluth, Minn. on September 11, 2014. Tonight the moon rises around 9:30 p.m. The lower in the sky it is, the brighter the aurora will appear. Hopefully tonight’s lights will outdo what the moon can dish out. Credit: Guy Sander

All the numbers are lined up. Now, will the weather and solar wind cooperate?  Stop back this evening as I’ll be updating with news as the storm happens. For tips on taking pictures of the aurora, please see this related story  “How  to Take Great Pictures of the Northern Lights”.

The auroral oval around 2:30 p.m. CDT this afternoon September 12 shows a southward expansion into the Scandinavian countries and Russia and Iceland. Where the sky is dark, auroras are typically seen anywhere under or along the edge of the oval. Click for current map. Credit: NOAA
The auroral oval at 11:15 p.m. CDT tonight September 12 shows a temporary pullback into northern Canada. Where the sky is dark, auroras are typically seen anywhere under or along the edge of the oval. Click for current map. Credit: NOAA

* UPDATE 8:15 a.m. Saturday September 13: Well, well, well. Yes, the effects of the solar blast did arrive and we did experience a G3 storm, only the best part happened before nightfall had settled over the U.S. and southern Canada. The peak was also fairly brief. All those arriving protons and electrons connected for a time with Earth’s magnetic field but then disconnected, leaving us with a weak storm for much of the rest of the night. More activity is expected tonight, but the forecast calls for a lesser G1 level geomagnetic storm.

* UPDATE 11 p.m. CDT: After a big surge late this afternoon and early evening, activity has temporarily dropped off. The ACE plot has “gone north” (see below). Though we’re in a lull, the latest NOAA forecast still calls for strong storms overnight.

Definite aurora seen through breaks in the clouds low in the northern sky here in Duluth, Minn. After a big surge late this afternoon and during early evening, activity's temporarily dropped off. The ACE plot has "gone north".
Definite aurora seen through breaks in the clouds low in the northern sky here in Duluth, Minn. After a big surge late this afternoon and during early evening, activity’s temporarily dropped off. The ACE plot has “gone north”.

* UPDATE 9 p.m. CDT: Aurora a bright greenish glow low in the northern sky from Duluth, Minn.

* UPDATE 7:45 p.m. CDT September 12: Wow! Kp=7 (G3 storm) at the moment. Auroras should be visible now over the far eastern seaboard of Canada including New Brunswick and the Gaspe Peninsula. I suspect that skywatchers in Maine and upstate New York should be seeing something as well. Still dusk here in the Midwest.

 

Clear Skies Tonight? Go Out and See the Aurora

Talk of aurora is in the air.  Our earlier story today by Elizabeth Howell alerted you to the possibility of northern lights. Well, it’s showtime!  As of 9:30 p.m. Central Daylight Time, the aurora has been active low in the northern sky.

Subtle pink rays stand above the green arc at 9:35 p.m. CDT. Credit: Bob King
Subtle pink rays stand above the green arc at 9:35 p.m. CDT. Credit: Bob King

From Duluth, Minn. U.S.,  a classic green arc low in the northern sky competed with the light of the rising gibbous moon. Once my eyes were dark-adapted, faint parallel rays stood streaked the sky above the arc. NOAA space weather forecasters expect this storm to peak between 1 a.m. CDT and sunrise Friday morning September 12 at a G2 or moderate level. Skywatchers across the northern tier of states and southern Canada should see activity across the northern sky. Moonlight will compromise the show, but it rises later each night and dims through the weekend.

The approximate extent of the auroral oval forecast for 11:30 p.m. CDT from Ovation. Credit: NOAA
The approximate extent of the auroral oval forecast for 11:30 p.m. CDT from Ovation. Credit: NOAA

This is only the start. Things really kick into gear Friday night and Saturday morning when a G3 strong geomagnetic storm is expected from the more direct blast sent our way by the September 10 X1.6 flare. Auroras might be visible as far south as Illinois and Kansas.

We’ll keep you in touch with storm activity by posting regular updates over the next couple days. Including odd hours. Here are some links to check during the night as you wait for the aurora to put in an appearance at your house:

* Ovation oval – shows the approximate extent of the auroral oval that looks like a cap centered on Earth’s geomagnetic pole. During storms, the oval extends south into the northern U.S. and farther.

* Kp index – indicator of magnetic activity high overhead and updated every three hours. A Kp index of “5” means the onset of a minor storm; a Kp of “6”, a moderate storm.

* NOAA space weather forecast

* Advanced Composition Explorer (ACE) satellite plots – The magnetic field direction of the arriving wind from the sun. The topmost graph, plotting Bz, is your friend. When the curve drops into the negative zone that’s good! A prolonged stay at -10 or lower increases the chance of seeing the aurora. Negative numbers indicate a south-pointing magnetic field, which has a greater chance of  linking into Earth’s northward-pointing field and wriggling its way past our magnetic defenses and sparking auroras.

Spectacular Aurora Sneaks in Quietly, Rages All Night

Expect the unexpected when it comes to northern lights. Last night beautifully illustrated nature’s penchant for surprise. A change in the “magnetic direction” of the wind of particles from the sun called the solar wind made all the difference. Minor chances for auroras blossomed into a spectacular, night-long storm for observers at mid-northern latitudes.

 

6-hours of data from NASA's Advanced Composition Explorer spacecraft, which measures energetic particles from the sun and other sources from a spot 1.5 million kilometers ahead of Earth toward the sun. By watching the Bz graph, you'll get advance notice of the potential for auroras. Click to visit the site. Credit: NOAA
6-hours of data from NASA’s Advanced Composition Explorer spacecraft, which measures energetic particles from the sun and other sources from a spot 1.5 million kilometers ahead of Earth toward the sun. By watching the Bz graph, you’ll get advance notice of the potential for auroras. Click to visit the site. Credit: NOAA

Packaged with the sun’s wind are portions of its magnetic field. As that material – called the interplanetary magnetic field (IMF) – sweeps past Earth, it normally glides by, deflected by our protective magnetic field, and we’re no worse for the wear. But when the solar magnetic field points south – called a southward Bz – it can cancel Earth’s northward-pointing field at the point of contact, opening a portal. Once linked, the IMF dumps high-speed particles into our atmosphere to light up the sky with northern lights. 

A large red patch briefly glowed above the bright green arc around 11:15 p.m. CDT last night May 3. The color was faintly visible with the naked eye. Credit: Bob King
A large red patch briefly glowed above the bright green arc around 11:15 p.m. CDT last night May 3. The color was faintly visible with the naked eye. Credit: Bob King

Spiraling down magnetic field lines like firefighters on firepoles, billions of tiny solar electrons strike oxygen and nitrogen molecules in the thin air 60-125 miles up. When the excited atoms return back to their normal rest states, they shoot off niblets of green and red light that together wash the sky in multicolor arcs and rays. Early yesterday evening, the Bz plot in the ACE satellite data dipped sharply southward (above), setting the stage for a potential auroral display.

After an intial flurry of bright rays, the aurora scaled back to two bright, diffuse arcs before erupting again around 11:30 p.m. Credit: Bob King
After an initial flurry of bright rays, the aurora scaled back to two bright, diffuse arcs with subtle rayed textures before erupting again around 11:30 p.m. Credit: Bob King

Nothing in the space weather forecast would have led you to believe northern lights were in the offing for mid-latitude skywatchers last night. Maybe a small possibility of a glow very low on the northern horizon. Instead we got the full-blown show. Nearly every form of aurora put in an appearance from multi-layered arcs spanning the northern sky to glowing red patches, crisp green rays and the bizarre flaming aurora. “Flames” look like waves or ripples of light rapidly fluttering from the bottom to the top of an auroral display. Absolutely unearthly in appearance and yet only 100 miles away.


VLF Auroral Chorus by Mark Dennison

I even broke out a hand-held VLF (very low frequency) radio and listened to the faint but crazy cosmic sounds of electrons diving through Earth’s magnetosphere. When my electron-jazzed brain finally hit the wall at 4 a.m., flames of moderately bright aurora still rippled across the north.

Just when you thought it was over, the whole northern sky burst into rays around 1 a.m. CDT. The whole northern sky lit up with green and red rays earlier this morning. While the green color was easy to see, the red was very pale. The human eye is much more sensitive to green light than red, one of the reasons why the aurora rarely appears red except in a camera during a time exposure. Credit: Bob King
Just when you thought it was over, the whole northern sky burst into rays around 1 a.m. CDT this morning. The human eye is much more sensitive to green light than red, one of the reasons why the aurora rarely appears red except in time exposures made with a camera. Credit: Bob King
Around 2 o'clock the northern lights displayed flaming when ripples of light pulse from top to bottom. It's very difficult to photograph, but here it is anyway! Credit: Bob King
Around 2 o’clock, flames pulsed from bottom to top in patchy aurora. It’s very difficult to photograph, but here it is anyway! Credit: Bob King

So what about tonight? Just like last night, there’s only a 5% chance of a minor storm. Take a look anyway –  nature always has a surprise or two up her sleeve.

This Aurora Video Shows How High The Lights Were Whizzing

Ever stood outside looking at the aurora and felt as though it was swirling just a short distance above your head? It’s hard to judge altitude when looking at sky phenomena because there are few landmarks above us. (The moon effect at the horizon is an example.) But it turns out there is a way to measure aurora altitude.

The eerie, green glow of the Northern Lights swirls about in the video you see above. A group of researchers used a unique but simple technique to measure how high the electrons were during the dazzling light display: they mounted two digital SLRs eight kilometers (five miles) apart in Alaska, and used that old astronomical friend, parallax, to measure distances.

“Using the parallax of the left-eye and the right-eye images, we can calculate the distance to the aurora using a [triangulation] method that is similar to the way the human brain comprehends the distance to an object,” stated Ryuho Kataoka, an associate professor at the National Institute of Polar Research in Japan. “Parallax is the difference in the apparent position of an object when observed at different angles.”

Altitude measurements have been done before using this technique, but it’s the first time digital SLRs were employed, the research team said. A typical aurora has electrons that are between 90 kilometers and 400 kilometers (55 miles and 249 miles) high.

By the way, for all the amateur astronomy photographers, there’s a potential chance for you to get involved with future research activities.

“Commercially available GPS units for digital SLR cameras have become popular and relatively inexpensive, and it is easy and very useful for photographers to record the accurate time and position in photographic files,” said Kataoka. “I am thinking of developing a website with a submission system to collect many interesting photographs from night-sky photographers over the world via the Internet.”

Read the entire paper in Annales Geophysicae.

Source: European Geophysical Union

Overnight Aurora Sets Sky On Fire, More Possible Tonight

I’m writing this at 1:30 a.m. running on what’s powering the sky over northern Minnesota right now – auroral energy. Even at this hour, rays are still sprouting in the southern sky and the entire north is milky blue-white with aurora borealis. Frankly, it’s almost impossible to resist going out again for another look.

Now updated with additional images.

An erupting filament and sharp, southward turn in the interplanetary magnetic field (IMF) was responsible for last night's northern lights show. This image was taken with the Solar and Heliospheric Observatory sun-blocking coronagraph in progress on Sept. 30. Credit: NASA/ESA
An erupting filament and sharp, southward dip in the interplanetary magnetic field (IMF) was responsible for last night’s northern lights show. This image was taken with the Solar and Heliospheric Observatory’s sun-blocking coronagraph on Sept. 30. Credit: NASA/ESA

The arrival of a powerful solar wind in excess of 375 miles per second (600 km/second) from a coronal mass ejection shocked the Earth’s magnetic sheath last night beginning around 9 p.m. CDT. The sun’s magnetic field, embedded in the wind, pointed sharply southward, allowing eager electrons and protons to worm their way past our magnetic defenses and excite the atoms in the upper atmosphere to glow. Voila! Northern lights.

A classic quiet start to Tuesday night's northern lights - a low green arc below the Big Dipper topped by a very faint red border. Credit: Bob King
A classic quiet start to Tuesday night’s northern lights – a low green arc below the Big Dipper topped by a very faint red border. Credit: Bob King

Sure, it started innocently enough. A little glow low in the northern sky. But within half an hour the aurora had intensified into a dense bar of light so and green and bright it cast shadows. This bar or swath grew and grew like some atomic amoeba until it swelled beyond the zenith into the southern sky. Meanwhile, an isolated patch of aurora glowed like an green ember beneath the Pleiades in the northeastern sky. The camera captured its eerie appearance as well as spectacular curtains of red aurora dancing above the dipper-shaped cluster.

A single patch of aurora glows beneath the Pleiades star cluster at center. Beautiful red rays as seen in the time exposure were only faintly visible with the naked eye. Credit: Bob King
A single patch of aurora glows beneath the Pleiades star cluster at center. Beautiful red rays as seen in the time exposure were only faintly visible with the naked eye. Credit: Bob King

Soft patches, oval glows and multiple arcs lit up the north, east and west, but in the first two hours of the display I never saw a ray or feature with any definition. The camera recorded a few but all was diffuse and pillowy to the eye. Rays finally made their appearance later – after midnight and later – when they massed and surged to the zenith and beyond.

A thick wall of green aurora surges upward in the northern sky headed for the zenith. Credit: Bob King
Looks a little scary. A thick wall of green aurora surges upward in the northern sky headed for the zenith. Credit: Bob King

Then came the flickering, flame-like patches and snaky shapes writhing lifelike across the constellation Pegasus during the phase called the coronal aurora. That’s when all the curtains and rays gather around the local magnetic zenith. As they flicker and flame, their shapes transform into eagle wings and snakes wriggling across the stars.

A large comet-like auroral form topped with red rays took up residence in the southeastern sky in Cetus around 10:30 p.m. last night. Credit: Bob King
A large comet-like auroral form accented with red rays took up residence in the southeastern sky in Cetus from about 10:15 until 11 p.m. last night. around 10:30 p.m. Credit: Bob King

Funny, the space weather forecast called for quiet conditions last night and for the next two nights. But the eruption of a large filament, a tubelike region of dense hydrogen gas held aloft in the sun’s atmosphere by magnetic fields, sent a bundle of subatomic joy in Earth’s direction a bit earlier than expected. More auroras are possible tonight and tomorrow night as the effect of the shock wave continues. Despite the U.S. government shutdown, the Space Weather Prediction Center remains open.

There are so many ways to appreciate the aurora but my favorite is simply to stand there dumbfounded and try to take it all in. Few phenomena in nature are more deeply moving.

Opposite Cetus in the Aquila Milky Way, a huge ghostly patch resembling breath on a mirror lingered for some 20 minutes before fading away. Credit: Bob King
Opposite Cetus in the Aquila Milky Way, a huge ghostly patch resembling breath on a mirror lingered for some 20 minutes before fading away. Credit: Bob King
This comet-like wisp next to Alpha Andromeda east of the Square of Pegasus appeared to flutter in the wind as it constantly dimmed, brightened and shape-shifted. Credit: Bob King
This comet-like wisp next to Alpha Andromeda east of the Square of Pegasus appeared to flutter in the wind as it constantly dimmed, brightened and shape-shifted. Click photo to learn more about when to expect the next auroral display. Credit: Bob King
Finally - a mighty show of rays around 3 a.m. this morning. What you don't see in the photo  are the rhythmic pulsations fluttering through the entire display, a phenomenon known as "flaming". Credit: Bob King
Finally – a mighty show of rays around 3 a.m. this morning. What you don’t see in the photo are the rhythmic pulsations fluttering through the entire display, a phenomenon known as “flaming”. Credit: Bob King

 

Magnetic and auroral activity indicators shot up to high levels last night and this morning. Left image from the POES satellite shows the extent of the auroral oval shortly after midnight CDT. At right, the Kp index shot up to 6 - a G2 or moderate geomagnetic storm - by the early morning. Click to see the current oval. Credit: NOAA
Magnetic and auroral activity indicators shot up to high levels last night and this morning. Left image from the POES satellite shows the extent of the auroral oval shortly after midnight CDT. At right, the Kp index shot up to 6 – a G2 or moderate geomagnetic storm – by the early morning. Click to see the current oval. Credit: NOAA

UPDATE: Other astrophotographers in the US also were able to capture some aurora images. John Chumack, whose images we frequently feature here on UT got this shot early on the morning of October 2:

Aurora Borealis, 'The Northern Lights, as seen near Dayton, Ohio on October 2, 2013. Credit and copyright: John Chumack/Galactic Images.
Aurora Borealis, ‘The Northern Lights, as seen near Dayton, Ohio on October 2, 2013. Credit and copyright: John Chumack/Galactic Images.

And Alan Dyer in Canada got this amazing “fiery” shot:

A red and green aurora, from southern Alberta, Canada on Oct 1, 2013. Credit and copyright: Alan Dyer/Amazing Sky Photography.
A red and green aurora, from southern Alberta, Canada on Oct 1, 2013. Credit and copyright: Alan Dyer/Amazing Sky Photography.

This timelapse from Arthur, Ontario was shot on Oct. 2 as well:

Your Guide To When, Where and How To See The Aurora Borealis

As an amateur astronomer, two of the most frequently questions I’m asked are “When is the best time to see the aurora borealis and where is the best place?” In terms of place, two locations comes to mind: Churchill, Manitoba and Tromso, Norway. But until such time as the transporter is invented, most of us will be staying closer to home. The simple answer is north and the farther north the better.

As for the time, in the northern border states of the US, auroras occur fairly regularly around the time of solar maximum, when the sun peaks in storm activity. The current solar cycle tops out this summer and fall, so your chances at seeing northern lights are far better now than a year and a half ago when solar activity saw a steep decline during a protracted minimum.

Continue reading “Your Guide To When, Where and How To See The Aurora Borealis”

Auroras Dance Over Northern U.S. Last Night, May Return Tonight

A burst of energetic particles from the Sun called a coronal mass ejection peppered Earth’s magnetic field yesterday afternoon sparking a modest but beautiful all-night display of the aurora borealis. Another light show may be in the offing tonight for skywatchers living in the northern U.S.,  Canada and northern Europe.

Around 1 a.m. the arc became more active, sending up occasional rays that lasted from about a minute before fading away and being replaced by another. Credit: Bob King
Around 1 a.m. the arc became more active, sending up occasional rays that lasted from about a minute before fading away and being replaced by another. Credit: Bob King

Pale green fingers of light splayed across the northern sky at twilight’s end came as a surprise. NOAA space weather forecasters had predicted little activity. These soon faded but a thick, fuzzy arc persisted throughout the night. It arched from horizon to horizon across the northern sky like a pallid, monochromatic rainbow. Such arcs are common. Often the aurora never gets past this stage and simmers quietly or even fades away during the night.

Not this one. Around local midnight (1 a.m. CDT) here in Duluth, Minn. small bright spots and a series of tall, faint rays punctuated the arc and over the span of a half-hour completely reshaped it into loopy rayed arcs resembling a crown.

I wasn't alone when the northern lights peaked about 1:20-2 a.m. At upper left you'll see the trails of a couple of fireflies. Credit: Bob King
I wasn’t alone when the northern lights peaked about 1:20-2 a.m. At upper left you’ll see the trails of a couple of fireflies. Credit: Bob King

To the eye, the brightest parts of the aurora appeared green, but the taffy-stretched rays were colorless. The camera’s sensitivity coupled with a 30-second time exposure revealed striking pinks and hints of blue. Both pink and green colors are caused by the emission of light from oxygen atoms.

An especially beautiful ray sticks up above the arc. Shorter exposures coupled with shorter shutter speeds are the best way to capture fine details of a northern lights display. Credit: Bob King
An especially beautiful ray sticks up above the arc. Shorter exposures coupled with shorter shutter speeds are the best way to capture fine details of a northern lights display. Credit: Bob King

Bombarded by high-speed solar wind electrons and protons, they get jazzed into higher energy states. When the atoms return to rest, each spits out a photon of green or red light. All those tiny flashes add up. Multiplied by the billions of atoms that exist even in the rarefied air at the aurora’s typical 60-150 mile (100-250 km) altitude and you get heavenly eye candy.

When we see an auroral arc - and associated rays - we really seeing a small section of the much larger, permanent aurora called the auroral oval. The northern oval is centered over the geomagnetic north pole located in northern Canada. Credit: NASA
When we see an auroral arc – and associated rays – we really seeing a small section of the much larger, permanent aurora called the auroral oval. The northern oval is centered over the geomagnetic north pole located in northern Canada. Credit: NASA

I started watching the northern lights at 11 from home then took a drive to darker skies. Even at dawn’s 3 a.m. start, the green arc held its own shot through with rays that occasionally towered halfway up the northern sky. While this display wasn’t a grand spectacle like some auroras, it possessed a certain majesty the same way a long, slow movement concludes a great symphony.

Chances for more of the same continues through tonight and possibly into tomorrow, so keep a watch on the northern sky before you hit the hay tonight. If you see something green and glowing it you might be in for a treat.

In another installment, I’ll share tips on how best to see the northern lights and share several excellent tools you can use for predicting when they might occur.

Stunning Aurora Video: Polar Spirits

This year, there have been some epic auroral displays, and astrophotographer Ole C. Salomonsen has just released this new video which includes real-time recordings of these “polar spirits.”

“My main focus is on getting the auroras [to] show as close as possible to real-time speed given the time available in a short video,” Salomonsen wrote on Vimeo. “In the film I have tried to show the slower majestic dancing lights, as well as the more faster, dramatic and abstract shows, and finally the auroras in combination with city lights and urban elements.”

Simply stunning, and if you watch closely on the opening sequence you can actually see some whales breaching out in the fjord!

POLAR SPIRITS from Ole C. Salomonsen on Vimeo.

Astrophotos: Northern Lights Over Iceland

Photographer Jack Fusco recently took a trip to Iceland, hoping to capture the unique Icelandic landscapes and night skies but ran into bad weather. “The weather wasn’t favorable for photography during the day and the skies completely cloud covered at night,” Jack said on Flickr, “and the last night I spent in Iceland was the only night that I was able to see the stars.” But what a night it was!


“I wasn’t completely sure what the Northern Lights would look like when I saw them, but when I first spotted them streaking across the sky I could hardly contain my excitement. I may not have gotten to photograph all of the spots that I had hoped, but on this night, for me, I felt like I truly had found something incredible,” he said, and the experience reminded him of Carl Sagan’s words, “Somewhere, something incredible is waiting to be known.”

The Northern Lights fill the Icelandic Sky - 1-20-2013. Credit and copyright: Jack Fusco.
The Northern Lights fill the Icelandic Sky on 1-20-2013. Credit and copyright: Jack Fusco.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Fires in the Sky: Aurorae and Meteor Photo by Ole Salomonsen

A bright fireball slashes through curtains of aurorae shimmering above the mountains of northern Norway, captured on camera by Ole C. Salomonsen in the early hours of September 20.

Salomonsen, a master at photographing the Northern Lights, says this was the biggest fireball he’s ever caught on camera.

“The fireball lasted for about 6-7 seconds until it vanished behind the mountain,” Ole recalls. “By the way, this mountain is over 1350 meters (4440 feet) high, and I am standing only 600 meters from the foot of it, so do not be fooled by the 14mm wide angle lens! There was some very distinguished blue colors surrounding the fireballs edges. Never ever seen anything big like this!”

The mountain at right is called “Otertinden”, and is about a 90 minute drive north of Tromsø, Norway — a hot spot for stunning auroral displays.

And if you’re wondering if the aurorae and the meteor are really in the same region of the atmosphere, well, they likely are. Incoming meteoroids begin to glow at around 70 to 100 km up, which is also about the same altitude that aurorae are visible.

Although Ole stated that this wasn’t the best aurora photo from the shoot, the fireball and its reflection in the still river made him feel this one “deserved to go first.”

The photo was taken with a Canon EOS 1D-X and a Nikon 14-24mm lens.

See more of Ole’s work on his website, www.arcticlightphoto.no, and you can like his page on Facebook here. (Also he’s got a couple of great time-lapse videos too!)

Image © Ole C. Salomonsen. All rights reserved. Used with permission.