An Incredible View Into the Heart of the Small Magellanic Cloud

A radio-telescope image of the Small Magellanic Cloud reveals more detail than ever seen before. Image Credit: N. Pingel et al.

The Small Magellanic Cloud (SMC) is over 200,000 light-years away, yet it’s still one of our galaxy’s closest neighbours in space. Ancient astronomers knew of it, and modern astronomers have studied it intensely. But the SMC still holds secrets.

By studying it and revealing its structure in more detail, astronomers at The Australian National University hope to grow our understanding of the SMC and galaxies in general.

Continue reading “An Incredible View Into the Heart of the Small Magellanic Cloud”

Astronomers Map Out the Raw Material for New Star Formation in the Milky Way

Accroding to new research, the Milky Way may still bear the marks of "ancient impacts". Credit: NASA/Serge Brunier

A team of researchers has discovered a complex network of filamentary structures in the Milky Way. The structures are made of atomic hydrogen gas. And we all know that stars are made mostly of hydrogen gas.

Not only is all that hydrogen potential future star-stuff, the team found that its filamentary structure is also a historical imprint of some of the goings-on in the Milky Way.

Continue reading “Astronomers Map Out the Raw Material for New Star Formation in the Milky Way”

Astronomers Are About to Detect the Light from the Very First Stars in the Universe

The Murchison Widefield Array radio telescope in remote Western Australia. Brown University.

A team of scientists working with the Murchison Widefield Array (WMA) radio telescope are trying to find the signal from the Universe’s first stars. Those first stars formed after the Universe’s Dark Ages. To find their first light, the researchers are looking for the signal from neutral hydrogen, the gas that dominated the Universe after the Dark Ages.

Continue reading “Astronomers Are About to Detect the Light from the Very First Stars in the Universe”

Whoa. That’s the Milky Way, Bouncing off the Moon in Radio Waves

Radio waves from our galaxy, the Milky Way, reflecting off the surface of the Moon. Image Credit: Dr Ben McKinley, Curtin University/ICRAR/ASTRO 3D. Moon image courtesy of NASA/GSFC/Arizona State University.
Radio waves from our galaxy, the Milky Way, reflecting off the surface of the Moon. Image Credit: Dr Ben McKinley, Curtin University/ICRAR/ASTRO 3D. Moon image courtesy of NASA/GSFC/Arizona State University.

The universe wasn’t always such a well-lit place. It had its own Dark Ages, back in the days before stars and galaxies formed. One of the big questions in astronomy concerns how stars and galaxies shaped the very early days of the Universe. The problem is, there’s no visible light travelling through the Universe from this time period.

Now, a team of astronomers led by Dr. Benjamin McKinley of the International Centre for Radio Astronomy Research (ICRAR) and Curtin University are using the Moon to help unlock these secrets.

Continue reading “Whoa. That’s the Milky Way, Bouncing off the Moon in Radio Waves”