Astronomers Want Your Help to Identify Risky Asteroids

Catalina Sky Survey 60-inch telescope
The Catalina Sky Survey 60-inch telescope observes the cosmos from Mount Lemmon in Arizona. (Credit: Catalina Sky Survey)

You, too, can be an asteroid hunter — thanks to a citizen-science project launched by the University of Arizona’s Lunar and Planetary Laboratory. And you might even get a scientific citation.

The project is enlisting human spotters to verify potential detections of space rocks moving through the field of view of the Catalina Sky Survey’s telescopes. The NASA-funded survey is charged with keeping track of more than a million asteroids, with a principal goal of identifying near-Earth objects that could pose a risk to our planet.

More than 14,400 near-Earth objects, or NEOs, have been discovered by the Catalina Sky Survey during the past 30 years, including 1,200 that were identified just in the past year. That adds up to nearly half of the known NEO population.

The problem is, astronomers know there are still lots of unknown asteroids out there — too many for them to spot without an assist from amateurs. “We take so many images of the sky each night that we cannot possibly look through all of our potential real asteroids,” Carson Fuls, a science engineering specialist for the Catalina Sky Survey, said in a NASA news release. That’s where the Daily Minor Planet can make a difference.

Continue reading “Astronomers Want Your Help to Identify Risky Asteroids”

Three New Potentially Hazardous Asteroids Discovered, Including a big one That Measures 1.5 km Across

Sstronomers have spotted three near-Earth asteroids (NEAs) hiding in the glare of the Sun. These NEAs are part of an elusive population that lurks inside the orbits of Earth and Venus. One of the asteroids is the largest object that is potentially hazardous to Earth to be discovered in the last eight years. Image Credit: DOE/FNAL/DECam/CTIO/NOIRLab/NSF/AURA/J. da Silva/Spaceengine

An asteroid 1.5 km across is no joke. Even a much smaller one, about the size of a house, can explode with more power than the first nuclear weapons. When an asteroid is greater than 1 km in diameter, astronomers call them “planet-killers.” The impact energy released from a planet-killer striking Earth would be devastating, so knowing where these asteroids are and where they’re headed is critically important.

Our defensive capability against asteroid strikes is in its infancy, so advance notice of asteroids that could cross Earth’s orbit is critical. We’ll need time to prepare.

Continue reading “Three New Potentially Hazardous Asteroids Discovered, Including a big one That Measures 1.5 km Across”

Hayabusa’s Target Itokawa Formed 4.6 Billion Years Ago, But Then it Was Smashed Up About 1.5 Billion Years Ago

The cross section area of the particle collected from the asteroid Itokawa using Hayabusa spacecraft. Credit: Osaka University

Within Earth’s orbit, there are an estimated eighteen-thousands Near-Earth Asteroids (NEAs), objects whose orbit periodically takes them close to Earth. Because these asteroids sometimes make close flybys to Earth – and have collided with Earth in the past – they are naturally seen as a potential hazard. For this reason, scientists are  dedicated to tracking NEAs, as well as studying their origin and evolution.

Continue reading “Hayabusa’s Target Itokawa Formed 4.6 Billion Years Ago, But Then it Was Smashed Up About 1.5 Billion Years Ago”

Asteroid Mining is Getting Closer to Reality. Planetary Resources Arkyd-6 Satellite Just Launched

The launch of the PSLV-C40 rocket from the First Launch Pad at the Satish Dhawan Space Centre. Credit: ISRO

In 2009, Arkyd Aeronautics was formed with the intention of becoming the first commercial deep-space exploration program. In 2012, the company was renamed Planetary Resources, and began exploring the ambitious idea of asteroid prospecting and mining. By harnessing Near-Earth Objects (NEOs) for their water and minerals, the company hopes to substantially reduce the costs of space exploration.

A key step in this vision is the deployment of the Arkyd 6, a CubeSat that will begin testing key technologies that will go into asteroid prospecting. Last week (on Friday, January 12th), the Arkyd-6 was one of 31 satellites that were launched into orbit aboard an Indian-built PSLV rocket. The CubeSat has since been deployed into orbit and is already delivering telemetry data to its team of operators on the ground.

The launch was not only a milestone for the asteroid prospecting company, but for commercial aerospace in general. For the purposes of creating the Arkyd 6, the company modified commercial-available technology to be used in space. This includes the mid-wave infrared (MWIR) sensor the spacecraft will use to detect water on Earth, as well as its avionics, power systems, communications, attitude determination and control systems.

The Arkyd-6 deploying from the PSLV rocket that carried it into orbit. Credit: ISRO

This process is central to the new era of commercial aerospace, where the ability to adapt readily-available technology will allow companies to have control over every stage of the development process, as well as significantly reducing costs. As Chris Lewicki, the President and CEO Planetary Resources, said in a recent company statement:

“The success of the Arykd-6 will validate and inform the design and engineering philosophies we have embraced since the beginning of this innovative project. We will continue to employ these methods through the development of the Arkyd-301 and beyond as we progress toward our Space Resource Exploration Mission.”

The company hopes to mount the Space Resource Exploration Mission by 2020, which will involve multiple spacecraft being deployed as part of a single rocket launch. These will be carried beyond Earth’s orbit and will use low-thrust ion propulsion systems to travel to asteroids that have been prospected by Arkyd-301. Once there, they will collect data and collect samples for analysis.

During the course of the Arkyd-6’s flight, 17 elements will be tested in total, the most important of which is the MWIR imager. This instrument will be the first commercial infrared imager to be used in space and relies on custom optics to collect pixel-level data. With this high-level of precision, the imager will conduct hydration studies of Earth to determine how effective the instrument is at sniffing out sources of water on other bodies.

Planetary Resources onfographic, showing the process of asteroid prospecting. Credit: Planetary Resources

Based on the findings from this initial flight, the company plans to further develop the sensor technology, which will be incorporated into their next mission – the Arkyd-301. This spacecraft will be the first step in Planetary Resources plan to make asteroid mining a reality. Using the same technology as the Arkyd-6 (with some refinements), the spacecraft will be responsible for identifying sources of water on Near-Earth Asteroids.

These asteroids will be the target of future missions, where commercial spacecraft attempt to rendezvous and mine them for water ice. As Chris Voorhees, the Chief Engineer at Planetary Resources, said:

“If all of the experimental systems operate successfully, Planetary Resources intends to use the Arkyd-6 satellite to capture MWIR images of targets on Earth’s surface, including agricultural land, resource exploration regions, and infrastructure for mining and energy. In addition, we will also have the opportunity to perform specific celestial observations from our vantage point in low Earth orbit. Lessons learned from Arkyd-6 will inform the company’s approach as it builds on this technology to enable the scientific and economic evaluation of asteroids during its future Space Resource Exploration Mission.”

All told, there are over 1600 asteroids in Near-Earth space. According to Planetary Resources own estimates, these contain a total of 2 trillion metric tons (2.2 US tons) of water, which can be used for the sake of life support and manufacturing fuel for space missions. By tapping this abundant off-world resource, they estimate that the associated costs of mounting missions to space can be reduced by 95%.

Much like SpaceX’s ongoing development of reusable rockets and attempts to create reusable space planes (such as the Dream Chaser and the Sabre Engine), the goal here is to make space exploration not only affordable, but lucrative. Once that is achieved, the size and shape of space exploration will be limited only by our imaginations.

And be sure to check out this video from Planetary Resources that outlines their Exploration Program:

“The success of the Arykd-6 will validate and inform the design and engineering philosophies we have embraced since the beginning of this innovative project,” said Chris Lewicki, President and CEO, Planetary Resources. “We will continue to employ these methods through the development of the Arkyd-301 and beyond as we progress toward our Space Resource Exploration Mission.”

Further Reading: Planetary Resources

Good News Everyone! There are Fewer Deadly Undiscovered Asteroids than we Thought

An artist's impression of a Nearth-Earth Asteroid (NEA) breaking up. Credit: NASA/JPL-Caltech

Beyond Earth’s orbit, there are innumerable comets and asteroids that are collectively known as Near-Earth Objects. On occasion, some of these objects will cross Earth’s orbit; and every so often, one will pass too close to Earth and impact on its surface. While most of these objects have been too small to cause serious damage, some have been large enough to trigger Extinction Level Events (ELEs).

For this reason, NASA and other space agencies have spent decades cataloging and monitoring the larger NEAs in order to determine if they might collide with Earth at some point in the future. The only question has been, how many remain to be found? According to a recent analysis performed by Alan W. Harris of MoreData! – a California-based research company – only a handful of NEAs haven’t been catalogued yet.

These findings were the subject of a presentation made this week at the 49th annual meeting of the American Astronomical Society’s Division for Planetary Sciences in Provo, Utah. As Harris indicated during the presentation, titled “The Population of Near-Earth Asteroids Revisited”, previous estimates of the remaining NEAs have been plagued by a consequential round-off error that have skewed the results.

Artist’s concept of the Wide-field Infrared Survey Explorer as its orbit around Earth. Credit: NASA/JPL

The source of this error has to do with how organizations that monitor NEOs determine “size-frequency distribution”. Basically, estimates are given in terms of number versus brightness, since most discovery surveys were conducted in the visible spectrum. This is not a reliable way of determining size though, since asteroids don’t all have the same albedo (aka. reflectivity).

As such, NEA brightness is expressed in units of absolute magnitude (H), where lower numbers indicate brighter objects. The IAU Minor Planet Center – which is responsible for maintaining information on asteroid and other small-body measurements – rounds off the reported values of H to the nearest 0.1 magnitude. As Harris explained during the course of his presentation:

“So, for example, a bin from H of 17.5 to 18.0 is really from 17.55 to 18.05, or 17.45 to 17.95, depending on which side of the bin you take “less than or equal to” rather than ‘less than’.”

While this has not caused much in the way of problems in the past, it has become significant as far as assessments of how many larger objects remain to be found are concerned. Harris first became aware of the potential for problems this past year after Dr. Pasqual Tricario – a Senior Scientist at the Planetary Science Institute – conducted a study that produced estimates different from those obtained by Harris and Italian astronomer Germano D’Abramo two years before.

This graphic shows asteroids and comets observed by NASA’s Near-Earth Object Wide-field Survey Explorer (NEOWISE) mission. Credit: NASA/JPL-Caltech/UCLA/JHU

The 2015 study conducted by Harris and D’Abramo – which appeared in Icarus under the title “The population of near-Earth asteroids” – yielded an estimate of 990 NEAs that were larger than 1 km in diameter. However, Tricario’s study (“The near-Earth asteroid population from two decades of observations“, also published in Icarus), which was based on the opposite “less than or equal to” assumption, produced estimates that were 10% lower.

As Harris explained, this prompted D’Adramo and him to considered a different approach. “We corrected the problem for the current analysis by choosing bin boundaries at .05 magnitudes, e.g. 17.25 to 17.75, so the 0.1 round-off thresholds naturally put objects in the right bin,” he said. “When Tricarico and I each made these corrections, our population estimates fell into almost perfect agreement.”

After applying the correction, Harris and D’Abramo’s overall estimate of undiscovered NEAs dropped from 990 to 921 ± 20. Beyond allowing for consistency between different studies, these corrected estimates also reduced the total number of undiscovered objects that remain undiscovered. According to the latest tallies from NASA’s Jet Propulsion Laboratory, 884 NEAs that are about 1 km in diameter have been discovered so far.

Based on the previous population estimate of 990 objects, this implied that the current surveys are 89% complete and 106 were yet to be found. When the corrections were applied to these numbers, JPL’s surveys now appears to be 96% complete, and only 37 objects remain to be found (almost three times less). Naturally, these new estimates depends on their own sets of assumptions, and different results can be obtained based on different criteria.

NASA is getting much better at discovering and detecting NEOs. Credit: NASA/NEO Program.

Still, a reduced estimate of undiscovered asteroids is definitely encouraging news. Especially when one considers how hazardous large asteroids are to the safety and well-being of life here on Earth. As of October 3rd, 2017, NASA’s Center for Near-Earth Object Studies (CNEOS) announced that there are a total of 157 potentially hazardous asteroids out there. Knowing that only a few more need to be found is bound to help some of us sleep at night!

Future studies are also expected to benefit from the deployment of next-generation missions. Thanks to the efforts of NASA’s Near-Earth-Object WISE (NEOWISE) mission, which looks for NEOs in the infrared band (rather than visible light), that number of known NEOs has increased substantially. With the deployment of the James Webb Space Telescope, those numbers are expected to reach even higher.

Between improvements in technology and methodology, a day may yet come when all Near-Earth Objects – be they big or small, potentially hazardous or harmless – are accounted for. Combined with asteroid defenses, like directed-energy beams or robots spacecraft capable of attaching themselves to asteroids and redirecting them, Extinction Level Events might very well become a thing of the past.

Further Reading: The Spaceguard Center

Nope, our Temporary Moon Isn’t Space Junk, it’s an Asteroid

Mining asteroids might be necessary for humanity to expand into the Solar System. But what effect would asteroid mining have on the world's economy? Credit: ESA.

In April of 2016, astronomers became aware of a distant object that appeared to be orbiting the Sun, but was also passing close enough to Earth that it could be periodically viewed using the most powerful telescopes. Since then, there has been ample speculation as to what this “Temporary Moon” could be, with most astronomers claiming that it is likely nothing more than an asteroid.

However, some suggested that it was a burnt-out rocket booster trapped in a near-Earth orbit. But thanks to new study by a team from the University of Arizona’s Lunar and Planetary Laboratory, this object – known as (469219) 2016 HO3 – has been confirmed as an asteroid. While this small near-Earth-asteroid orbits the Sun, it also orbits Earth as a sort of “quasi-satellite”.

The team that made this discovery was led by Vishnu Reddy, an assistant professor at the University of Arizona’s Lunar and Planetary Laboratory. Their research was also made possible thanks to NASA’s Near-Earth Object Observations Program. This program is maintained by NASA’s Center for Near-Earth Object Studies (CNEOS) and provides grants to institutions dedicated to the research of NEOs.

2016 HO3 is an asteroid that appears to orbit around Earth due to the mechanics of its peculiar orbit around the sun. Credit: NASA-JPL

The details of this discovery were presented this week at the 49th Annual Meeting of the Division for Planetary Sciences in Utah at a presentation titled “Ground-based Characterization of Earth Quasi Satellite (469219) 2016 HO3”. During the course of the presentation, Reddy and his colleagues described how they spotted the object using the Large Binocular Telescope (LBT) at the LBT Observatory on Mount Graham in southeastern Arizona.

According to their observations, 2016 HO3 measures just 100 meters (330 feet) across and is the most stable quasi-satellite discovered to date (of which there have been five). Over the course of a few centuries, this asteroid remains at a distance of 38 to 100 lunar distances – i.e. the distance between the Earth and the Moon. As Reddy explained in a UANews press statement, this makes the asteroid a challenging target:

“While HO3 is close to the Earth, its small size – possibly not larger than 100 feet – makes it challenging target to study. Our observations show that HO3 rotates once every 28 minutes and is made of materials similar to asteroids.”

Discovering the true nature of this object has also solved another big question – namely, where did 2016 HO3 come from? For those speculating that it might be space junk, it then became necessary to determine what the likely source of that junk was. Was it a remnant of an Apollo-era mission, or something else entirely? By determining that it is actually an NEO, Reddy and his team have indicted that it likely comes from the same place as other NEOs.

Vishnu Reddy of the University of Arizona’s Lunar Planetary Laboratory. Credit: Bob Demers/UANews

Reddy and his colleagues also indicated that 2016 HO3 reflected light off its surface in a way that is similar to meteorites that have been studied here on Earth. This was another indication that 2016 HO3 has similar origins to other NEOs (some of which have entered our atmosphere as meteors) which are generally asteroids that were kicked out of the Main Belt by Jupiter’s gravity.

“In an effort to constrain its rotation period and surface composition, we observed 2016 HO3 on April 14 and 18 with the Large Binocular Telescope and the Discovery Channel Telescope,” Reddy said. “The derived rotation period and the spectrum of emitted light are not uncommon among small NEOs, suggesting that 2016 HO3 is a natural object of similar provenance to other small NEOs.”

But unlike other NEOs which periodically cross Earth’s orbit, “quasi-satellites” are distinguished by their rather unique orbits. In the case of 2016 HO3, it has an orbit that follows a similar path to that the Earth’s; but because it is not dominated by the Earth’s gravity, their two orbits are out of sync. This causes 2016 HO3 to make annual loops around the Earth as it orbits the Sun.

Artist’s impression of a hypothetical astronaut mission to an asteroid. Credit: NASA Human Exploration Framework Team

Christian Veillet, one of co-authors of the presentation, is also the director of the LBT Observatory. As he explained, this characteristic could make “quasi-satellites” ideal targets for future NEO studies:

“Of the near-Earth objects we know of, these types of objects would be the easiest to reach, so they could potentially make suitable targets for exploration. With its binocular arrangement of two 8.4-meter mirrors, coupled with a very efficient pair of imagers and spectrographs like MODS, LBT is ideally suited to the characterization of these Earth’s companions.”

Similarly, their orbital characteristic could make “quasi-satellites” an ideal target for future space missions. One of NASA’s main goals in the coming decade is to send a crewed mission to a Near-Earth Object in order to test the Orion spacecraft and the Space Launch System. Such a mission would also help develop the necessary expertise for mounting missions deeper into space (i.e. to Mars and beyond).

The study of Near-Earth Objects is also of immense importance when it comes to determining how and where as asteroid might pose a threat to Earth. This knowledge allows for advanced warnings which can potentially save lives. It is also significant when it comes to the development of proposed counter-measures, several of which are currently being explored.

And be sure to enjoy this video of 2016 HO3’s orbit, courtesy of NASA’s Jet Propulsion Laboratory:

Further Reading: UANews

Large Near-Earth Asteroid Will Pass Earth by This September

Artist's impression of a Near-Earth Asteroid passing by Earth. Credit: ESA

Within Earth’s orbit, there are literally thousands of what are known as Near-Earth Objects (NEOs), more than fourteen thousands of which are asteroids that periodically pass close to Earth. Since the 1980s, these objects have become a growing source of interest to astronomers, due to the threat they sometimes represent. But as ongoing studies and decades of tracking the larger asteroids has shown, they usually just pass Earth by.

More importantly, it is only on very rare occasions (i.e. over the course of millions of years) that a larger asteroid will come close to colliding with Earth. For example, this September 1st, the Near-Earth Asteroid (NEA) known as 3122 Florence, will pass by Earth, but poses no danger of hitting us. Good thing too, since this Near-Earth Asteroid is one of the largest yet to be discovered, measuring about 4.4 km (2.7 mi) in diameter!

To put that in perspective, the asteroid which is thought to have killed the dinosaurs roughly 65 million years ago (aka. the Cretaceous–Paleogene extinction event) is believed to have measured 10 km (6 mi) in diameter. This impact also destroyed three-quarters of the plant and animal species on Earth, hence why organizations like NASA’s Center for Near-Earth Object Studies (CNEOS) is in he habit of tracking the larger NEAs.

Asteroid Florence, a large near-Earth asteroid, will pass safely by Earth on Sept. 1, 2017, at a distance of about 7 million km (4.4 million mi). Credits: NASA/JPL-Caltech

Once again, NASA has determined that this particular asteroid will sail harmlessly by, passing Earth at a minimum distance of over 7 million km (4.4 million mi), or about 18 times the distance between the Earth and the Moon. As Paul Chodas – NASA’s manager of CNEOS at the Jet Propulsion Laboratory in Pasadena, California – said in a NASA press statement:

“While many known asteroids have passed by closer to Earth than Florence will on September 1, all of those were estimated to be smaller. Florence is the largest asteroid to pass by our planet this close since the NASA program to detect and track near-Earth asteroids began.”

Rather than being a threat, the flyby of this asteroid will be an opportunity for scientists to study it up close. NASA is planning on conducting radar studies of Florence using the Goldstone Solar System Radar in California, and the National Science Foundation’s (NSF) Arecibo Observatory in Peurto Rico. These studies are expected to yield more accurate data on its size, and reveal surface details at resolutions of up to 10 m (30 feet).

This asteroid was originally discovered on March 2nd, 1981, by American astronomer Schelte Bus at the Siding Spring Observatory in southwestern Australia. It was named in honor of Florence Nightingale (1820-1910) the founder of modern nursing. Measurements obtained by NASA’s Spitzer Space Telescope and the NEOWISE mission are what led to the current estimates on its size – about 4.4 km (2.7 mi) in diameter.

Artist’s rendition of how far Florence will pass by Earth. Credits: NASA/JPL-Caltech

The upcoming flyby will be the closest this asteroid has passed to Earth since August 31st, 1890, where it passed at a distance of 6.7 million km (4.16 million mi). Between now and then, it also flew by Earth on August 29th, 1930, passing Earth at a distance of about 7.8 million km (4.87 million mi). While it will pass Earth another seven times over the course of the next 500 years, it will not be as close as it will be this September until after 2500.

For those interesting into doing a little sky watching, Florence will be brightening substantially by late August and early September. During this time, it will be visible to those using small telescopes for several nights as it moves through the constellations of Piscis Austrinus, Capricornus, Aquarius and Delphinus.

Be sure to check out these animations of Florence’s orbit and its close flyby to Earth:

https://echo.jpl.nasa.gov/asteroids/Florence/Florence_orbit.mov

https://echo.jpl.nasa.gov/asteroids/Florence/Florence_Earth_flyby.mov

Further Reading: NASA

There’s a Hard Rock Rain on the Moon, We Can See it From Earth

An artists impression of a lunar explosion - caused by the impact of a meteorite. Credit: NASA/Jennifer Harbaugh

In February of 2015, the National Observatory of Athens and the European Space Agency launched the Near-Earth object Lunar Impacts and Optical TrAnsients (NELIOTA) project. Using the 1.2 meter telescope at the Kryoneri Observatory, the purpose of this project is to the determine the frequency and distribution of Near-Earth Objects (NEOs) by monitoring how often they impact the Moon.

Last week, on May 24th, 2017, the ESA announced that the project had begun to detect impacts, which were made possible thanks to the flashes of light detected on the lunar surface. Whereas other observatories that monitor the Moon’s surface are able to detect these impacts, NELIOTA is unique in that it is capable of not only spotting fainter flashes, but also measuring the temperatures of they create.

Projects like NELIOTA are important because the Earth and the Moon are constantly being bombarded by natural space debris – which ranges in size from dust and pebbles to larger objects. While larger objects are rare, they can cause considerable damage, like the 20-meter object that disintegrated above the Russian city of Chelyabinsk in February of 2013, causing extensive injuries and destruction of property.

The two main smoke trails left by the Russian meteorite as it passed over the city of Chelyabinsk. Credit: AP Photo/Chelyabinsk.ru

What’s more, whereas particulate matter rains down on Earth and the Moon quite regularly, the frequency of pebble-sized or meter-sized objects is not well known. These objects remain too small to be detected by telescopes directly, and cameras are rarely able to picture them before they break up in Earth’s atmosphere. Hence, scientists have been looking for other ways to determine just how frequent these potentially-threatening objects are.

One way is to observe the areas of the lunar surface that are not illuminated by the Sun, where the impact of a small object at high speed will cause a bright flash. These flashes are created by the object burning up on impact, and are bright enough to be seen from Earth. Assuming the objects have a density and velocity common to NEOs, the brightness of the impact can be used to determine the size and mass of the object.

As Detlef Koschny – the co-manager of the near-Earth object segment of the ESA’s Space Situational Awareness Program, and a scientist in the Science Support Office – said in an ESA press release:

These observations are very relevant for our Space Situational Awareness program. In particular, in the size range we can observe here, the number of objects is not very well known. Performing these observations over a longer period of time will help us to better understand this number.

Tiny pieces of rock striking the Moon’s surface were witnessed by the NELIOTA project, which was monitoring the dark side of the Moon. Credit: NELIOTA project

After being taken offline in 2016 for the sake of making upgrades, the NELIOTA project officially began conducting operations on March 8th, 2017. Using this refurbished telescope, which is operated by the National Observatory of Athens, NELIOTA is capable of detecting flashes that are much fainter than any current, small-aperture, lunar monitoring telescopes.

The telescope does this by observing the Moon’s night hemisphere whenever it is above the horizon and between phases. At these times – i.e. between a New Moon and the First Quarter, or between the Last Quarter and a New Moon – the surface is mostly dark and flashes are most visible. Incoming light is then split into two colors and the data is recorded by two advanced digital cameras that operate in different color ranges.

This data is then analyzed by automated software, which extrapolates temperatures based on the color data obtained by the cameras. As Alceste Bonanos – the Principal Investigator for NELIOTA – explained, all this sets the 1.2 meter telescope apart:

Its large telescope aperture enables NELIOTA to detect fainter flashes than other lunar monitoring surveys and provides precise color information not currently available from other project. Our twin camera system allows us to confirm lunar impact events with a single telescope, something that has not been done before. Once data have been collected over the 22-month long operational period, we will be able to better constrain the number of NEOs (near-Earth objects) in the decimetre to metre size range.

Images showing the lunar impact flash caught by NELIOTA. Credit: NELIOTA project

The NELIOTA project scientists are currently collaborating with the Science Support Office of ESA to analyze the flashes and measure the temperatures of each flash. From this, they hope to be able to make accurate estimates of the mass and size of each impactor, which they will further corroborate by analyzing the size of the craters these impacts leave behind.

The study of impacts on the Moon will ultimately let scientists know exactly how often larger objects are raining down on Earth. Armed with this information, we will be able to make better predictions on when and how a potentially-threatening object could be entering our atmosphere. As the Chelyabinsk meteor demonstrated, one of the greatest dangers posed by meteorites is a general lack of preparedness. Where people can be forewarned, injury, damage and even deaths can be prevented.

NELIOTA is also contributing to public outreach and education through a number of initiatives. These include public tours of the Kryoneri Observatory – in which the details of the NELIOTA project are shared – as well as presentations to students and the general public about Near-Earth Asteroids. The project team are also training two PhD students in how to operate the Kryoneri telescope and conduct lunar observing, thus creating the next-generation of NEO observers.

This summer (Friday, June 30th), the Observatory will also be hosting a public event to coincide with Asteroid Day 2017. This international event will feature presentations, speeches and educational seminars hosted by astronomical institutions and organizations from all around the world. Save the date!

Further Reading: ESA

NASA’s NEOWISE Missions Spots New Comets

Artist's concept of the Wide-field Infrared Survey Explorer as its orbit around Earth. Credit: NASA/JPL

NASA’s Wide-field Infrared Survey Explorer (WISE) accomplished much during its first mission, which ran from December of 2009 to September of 2010. During the many months that it was active, the orbital telescope conducted an all-sky astronomical survey in the infrared band and discovered thousands of minor planets and numerous star clusters.

The extension of its mission, NEOWISE, has brought new life to the telescope as a comet and asteroid hunter. And since its re-activation in December of 2013, the orbiting telescope has spotted hundreds of Near Earth Objects (NEOs) and thousands of Main Belt asteroids. Most recently, it has detected two new objects (both possibly comets) which could be observable from Earth very soon.

The most recent object to be detected – 2016 WF9 – was first observed by NEOWISE on November 27th, 2016. This comet’s path through the Solar System takes it on a circuitous route, taking it from Jupiter to just inside the orbit of Earth over the course of 4.9 years. Much like other objects of its kind, 2016 WF9 may have once been a comet, or part of a  population of dark objects in the Main Asteroid Belt.

Artist’s rendition of the comet 2016 WF9 as it passes Jupiter’s orbit and moves toward the sun. Credit: NASA/JPL-Caltech

In any case, 2016 WF9 will approach Earth’s orbit on February 25th, 2017, passing Earth at a minimum distance of almost 51 million km (32 million mi). This will place it well outside the orbit of the Moon, so the odds of it threatening Earth are negligible. But for those keen observers hoping to catch sight of the object, it will be close enough that it might be visible with just a pair of binoculars.

Since its discovery, 2016 WF9 has been of interest to astronomers, mainly because it straddles the already blurry line between asteroids and comets. While its proportions are known – roughly 0.5 to 1 kilometer in diameter (0.3 to 0.6 miles) – its other characteristics have led to some confusion as to where it came from. For one, its appearance (which is quite dark) and its orbit are consistent with what one expects from a comet.

But on the other hand, it lacks the characteristic cloud of dust and gas that comets are known for. As James Bauer, NEOWISE’s Deputy Principal Investigator at JPL, said in a NASA press release:

“2016 WF9 could have cometary origins. This object illustrates that the boundary between asteroids and comets is a blurry one; perhaps over time this object has lost the majority of the volatiles that linger on or just under its surface.”

Graphic showing the asteroids and comets observed by NASA’s Near-Earth Object Wide-field Survey Explorer (NEOWISE) mission. Credit: NASA/JPL-Caltech/UCLA/JHU

The other object, C/2016 U1 NEOWISE, was discovered about a month prior to 2016 WF9. Its orbit, which can you see by checking out the 3D Solar System Simulator, takes it from the outer Solar System to within Mercury’s orbit over the course of thousands of years. According to NASA scientists, this object is very clearly a comet, as evidenced by the dust it has been releasing as it gets closer to our Sun.

During the first week of 2017, comet C/2016 U1 NEOWISE is also likely to be visible in the night sky – in this case, in the southeastern sky shortly before dawn (for those looking from the northern hemisphere). It will reach its closest point to the Sun on January 14th (where it will be passing within Mercury’s orbit) before heading back out towards the outer Solar System.

Once again, it is believed that comet-hunters should be able to see it, though that is open to question. Paul Chodas, the manager of NASA’s Center for Near-Earth Object (NEO) Studies at the Jet Propulsion Laboratory, thinks that this object “has a good chance of becoming visible through a good pair of binoculars, although we can’t be sure because a comet’s brightness is notoriously unpredictable.”

A mosaic of the images covering the entire sky as observed by the Wide-field Infrared Survey Explorer (WISE), part of its All-Sky Data Release. Credit: NASA/JPL

In any case, NASA will be continuing to monitor 2016 WF9 to see if they can’t sort out what it is. Should it prove to be a comet, it would be the tenth discovered by NEOWISE since it was reactivated in December of 2013. If it turns out to be an asteroid, it would be the one-hundredth discovered since its reactivation.

As of November 2016, the orbital telescope has conducted over 562,000 infrared measurements have been made of 24,024 different solar system objects, including 613 NEOs and 110 comets. It has also been responsible for discovering 249 new near-Earth objects and comets, as well as more than 34,000 asteroids during its original mission.

At present, NEOWISE’s science team is currently reprocessing all its primary mission data to extend the search for asteroids and comets. It is hoped that by taking advantage of the latest in photometric and astrometric calibrations, they will be able to push the limits of what the telescope can detect, thereby adding many more minor planets and objects to its suite of discoveries.

And be sure to enjoy this video, detailing the first two years of asteroid data collected by the NEOWISE mission:

Further Reading: NASA

Get That Geologist A Flight Suit!

Future missions to Mars and other locations in the Solar System may depend heavily on the skills of planetary geologists. Credit: NASA Ames Research Center

In the coming decades, the world’s largest space agencies all have some rather big plans. Between NASA, the European Space Agency (ESA), Roscosmos, the Indian Space Research Organisation (ISRO), or the China National Space Administration (CNSA), there are plans to return to the Moon, crewed missions to Mars, and crewed missions to Near-Earth Objects (NEOs).

In all cases, geological studies are going to be a major aspect of the mission. For this reason, the ESA recently unveiled a new training program known as the Pangaea course, a study program which focuses on identifying planetary geological features. This program showcases just how important planetary geologists will be to future missions.

Pangaea takes its name from the super-continent that that existed during the late Paleozoic and early Mesozoic eras (300 to 175 million years ago). Due to convection in Earth’s mantle, this continent eventually broke up, giving rise to the seven continents that we are familiar with today.

The super-continent Pangea during the Permian period (300 - 250 million years ago). Credit: NAU Geology/Ron Blakey
The super-continent Pangea during the Permian period (300 – 250 million years ago). Credit: NAU Geology/Ron Blakey

Francesco Sauro – a field geologist, explorer and the designer of the course – explained the purpose of Pangaea in an ESA press release:

“This Pangaea course – named after the ancient supercontinent – will help astronauts to find interesting rock samples as well as to assess the most likely places to find traces of life on other planets. We created a course that enables astronauts on future missions to other planetary bodies to spot the best areas for exploration and the most scientifically interesting rocks to take samples for further analysis by the scientists back on Earth.”

This first part of the course will take place this week, where astronaut trainer Matthias Maurer and astronauts Luca Parmitano and Pedro Duque will be learning from a panel of planetary geology experts. These lessons will include how to recognize certain types of rock, how to draw landscapes, and the exploration of a canyon that has sedimentary features similar to the ones observed in the Murray Buttes region, which was recently imaged by the Curiosity rover.

The geology panel will include such luminaries as Matteo Messironi (a geologist working on the Rosetta and ExoMars missions), Harald Hiesinger (an expert in lunar geology), Anna Maria Fioretti (a meteorite expert), and Nicolas Mangold (a Mars expert currently working with NASA’s Curiosity team).

Rock samples on display at ESA's Pangaea training for astronauts in identifying planetary geological features for future missions to the Moon, Mars and asteroids. Credit: ESA/L. Bessone
Rock samples on display at ESA’s Pangaea training course, which is intended to help astronauts in identify planetary geological features for future missions to the Moon, Mars and asteroids. Credit: ESA/L. Bessone

Once this phase of the course is complete, a series of field trips will follow to locations that were chosen because their geological features resemble those of other planets. This will include the town of Bressanone in northeastern Italy, which lies a few kilometers outside of the Brenner Pass (the part of the Alps that lies between Italy and Austria).

In many ways, the Pangaea course picks up where the Cooperative Adventure for Valuing and Exercising Human Behaviour and Performance Skills (CAVES) program left off. For several years now, the ESA has been conducting training missions in underground caverns in order to teach astronauts about working in challenging environments.

This past summer, the latest program involved a team of six international astronauts spending two weeks in a cave network in Sardinia, Italy. In this environment,  800-meters (2625 ft) beneath the surface, the team carried out a series of research and exploration activities designed to recreate aspects of a space expedition.

As the teams explore the caves of Sardinia, they encountered caverns, underground lakes and examples of strange microscopic life – all things they could encounter in extra-terrestrial environments. While doing this, they also get the change to test out new technologies and methods for research and experiments.

Sedimentary outcroppings in the Bressanoe region (left), compared to sedimentary deposits in the Murray Buttes region on Mars (right). Credit: ESA/I. Drozdovsky (left); NASA (right)
Sedimentary outcroppings in the Bressanoe region (left), compared to sedimentary deposits in the Murray Buttes region on Mars (right). Credit: ESA/I. Drozdovsky (left); NASA (right)

In a way that is similar to expeditions aboard the ISS, the program was designed to teach an international team of astronauts how to address the challenges of living and working in confined spaces. These include limited privacy, less equipment for hygiene and comfort, difficult conditions, variable temperatures and humidity, and extremely difficult emergency evacuation procedures.

Above all, the program attempts to foster teamwork, communication skills, decision-making, problem-solving, and leadership. This program is now an integral part of the ESA’s astronaut training and is conducted once a year. And as project leader Loredana Bessone explained, the Pangaea course fits with the aims of the CAVES program quite well.

“Pangaea complements our CAVES underground training,” she said. “CAVES focuses on team behaviour and operational aspects of a space mission, whereas Pangaea focuses on developing knowledge and skills for planetary geology and astrobiology.”

From all of these efforts, it is clear that the ESA, NASA and other space agencies want to make sure that future generations of astronauts are trained to conduct field geology and will be able to identify targets for scientific research. But of course, understanding the importance planetary geology in space exploration is not exactly a new phenomenon.

The six-member CAVES team in Sardinia, Italy, observing an underground pool. Credit: ESA/V.Crobu
The six-member CAVES team in Sardinia, Italy, observing an underground pool. Credit: ESA/V. Crobu

In fact, the study of planetary geology is rooted in the Apollo era, when it became a field separate from other fields of geological research. And geology experts played a very pivotal role when it came to selecting the landing sites of the Apollo missions. As Emily Lakdawalla, the Senior Editor of The Planetary Society (and a geologist herself), told Universe Today in a phone interview:

“The Apollo astronauts received training in field geology before they went to the Moon. Jim Head at Brown University, who was my advisor, was one person who provided that training. Before there were missions, the Lunar Orbiter program returned photos that geologists used to map the surface of the Moon and find good landing sites.”

This tradition is being carried on today with instruments like the Mars Global Surveyor. Before the Spirit and Opportunity rovers were deployed to the Martian surface, NASA scientists studied images taken by this orbiter to determine which potential landing sites would prove to be the valuable for conducting research.

And thanks to the experience gained by the Apollo missions and improvements made in both technology and instrumentation, the process has become much more sophisticated. Compared to the Apollo-era, today’s NASA mission planners have much more detailed information to go on.

Moon rocks from the Apollo 11 mission. Credit: NASA
Moon rocks from the Apollo 11 mission. Credit: NASA

“These days, the orbiter photos have such high resolutions that its just like having aerial photographs, which is something Earth geologists have always used as a tool to scope out an area before going to study it,” Lakdawalla said. “With these  photos, we can map out an area in detail before we send a rover, and determine where the most high-value samples will be.”

Looking ahead, everything that’s learned from sending astronauts to the Moon – and from the study of the lunar rocks they brought back – is going to play a vital role when it comes time to explore Mars, go back to the Moon, and investigate NEOs. As Lakdawalla explained, in each case, the purpose of the geological studies will be a bit different.

“The goal in obtaining samples from the Moon was about understanding the chronology of the Moon. The timescale we have developed for the Moon are anchored in the Apollo samples. But we think that the samples have been sampling one major impact – the Imbrium impact. The next Moon samples will attempt to sample other time periods so we can determine if our time scales are correct.”

“On Mars, the questions is, ‘what are the history of water on Mars’. You try to find rocks from orbit that will answer that questions – rocks that have either been altered by water or formed in water. And that is how you select your landing zone.”

And with future missions to NEOs, astronauts will be tasked with examining geological samples which date back to the formation of the Solar System. From this, we are likely to get a better understanding of how our Solar System formed and evolved over the many billion years it has existed.

Clearly, it is a good time to be a geologist, as their expertise will be called upon for future missions to space. Hope they like tang!

Further Reading: ESA, CSA