Pink Galactic Smackdown Results in Cosmic Bulls-eye

Bright pink nebulae encircle spiral galaxy NGC 922 in this image from the NASA/ESA Hubble Space Telescope. Credit: NASA/ESA. Zoom: John Williams/TerraZoom and Zoomify

Galaxies pack a wallop. A galactic bulls-eye ringed with pink nebulae is the only evidence of a rare galactic collision of NGC 922 that occurred millions of years ago. Clicking the button on the far right of the toolbar will allow awesomecosmicsauce to tantalize your eyes and work all of the pixels on your computer screen. Pressing the “ESC” will return you to the present universe.

Explore this awesome image from the NASA/ESA Hubble Space Telescope. While lovely, something is amiss in this image. NGC 922 used to be a spiral galaxy. As you zoom across the image, the spiral arms look distorted and disrupted. Hints of a galactic interaction are strewn across the galaxy from the large numbers of bright pink nebulae and blue stars to the spray of dim stars toward the top of the image. Ripples set up as the smaller galaxy passed through the gas and dust clouds of NGC 922 created new star formation. Ultraviolet radiation from these bright new stars cause hydrogen gas in the surrounding nebula to glow a characteristic pink. The tugs of gravity hurled thousands of stars outward.

Episode 60 of the Hubblecast explores NGC 922, a galaxy that has been hit square-on by another. Ripples of star-formation are still propagating out across thousands of light-years of space over 300 million years after the collision, making it a prime example of what astronomers call a collisional ring galaxy.

Scientists believe that millions of years ago a small galaxy, known as 2MASXI J0224301-244443, plunged through the heart of NGC 922. Sometimes, if a small galaxy hits a larger galaxy just right, a circle is formed. But more often than not, galaxies are not aligned perfectly. When a galaxy smacks another off center, one side of the ring is brighter than the other. NGC 922 is a prime example of what astronomers call collisional ring galaxies. Although only a few ring galaxies are seen in our cosmic neighborhood, of which the Cartwheel Galaxy is the most spectacular, ring galaxies appear to be commonplace as we peer further into the past.

As you explore the empty places of the image, look for faraway background galaxies. Several dim spiral galaxies dot the image both outside the galaxy and within the star-speckled interior.

NGC 922 is found about 330 million light-years from Earth toward the constellation Fornax. Sky mapper and French astronomer Nicolas Louis de Lacaille introduced Fornax, the Furnace, in 1756. Fornax is relatively devoid of stars allowing astronomers to peer deep into the universe. The constellation was the perfect target for the Hubble Ultra Deep Field image.

NASA/ESA Hubble Space Telescope image of NGC 922. Credit: NASA, ESA

Source: ESA Hubble

NASA Reveals Plans for New Mars Rover

Sequels are all the rage these days… even for NASA, apparently.

At the American Geophysical Union 2012 convention in San Francisco today, NASA’s associate administrator for science John Grunsfeld revealed the agency’s plans for another Mars mission. Slated to land in 2020, it will be a rover based on the same design as Mars Science Laboratory. Estimated cost of the mission was announced to be $1.5 billion.

This news brought mixed reactions from many of those in attendance as well as followers online, as while more exploration of the Red Planet is certainly an exciting concept, we have all heard — and seen — countless tales of budget cuts and funding problems throughout NASA over recent years, and many proposed missions and collaborations have had to be shelved or cut short due to lack of funds (remember ExoMars?) Even though the budget for this mission is supposedly “not being taken from other areas,” it’s clearly not going to them either. It will be interesting to see how this plays out across the agency.

The full press release from NASA can be seen below:

(Via NASA)

Building on the success of Curiosity’s Red Planet landing, NASA has announced plans for a robust multi-year Mars program, including a new robotic science rover set to launch in 2020. This announcement affirms the agency’s commitment to a bold exploration program that meets our nation’s scientific and human exploration objectives.

“The Obama administration is committed to a robust Mars exploration program,” NASA Administrator Charles Bolden said. “With this next mission, we’re ensuring America remains the world leader in the exploration of the Red Planet, while taking another significant step toward sending humans there in the 2030s.”

The planned portfolio includes the Curiosity and Opportunity rovers; two NASA spacecraft and contributions to one European spacecraft currently orbiting Mars; the 2013 launch of the Mars Atmosphere and Volatile EvolutioN (MAVEN) orbiter to study the Martian upper atmosphere; the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission, which will take the first look into the deep interior of Mars; and participation in ESA’s 2016 and 2018 ExoMars missions, including providing “Electra” telecommunication radios to ESA’s 2016 mission and a critical element of the premier astrobiology instrument on the 2018 ExoMars rover.

The plan to design and build a new Mars robotic science rover with a launch in 2020 comes only months after the agency announced InSight, which will launch in 2016, bringing a total of seven NASA missions operating or being planned to study and explore our Earth-like neighbor.

The 2020 mission will constitute another step toward being responsive to high-priority science goals and the president’s challenge of sending humans to Mars orbit in the 2030s.

The future rover development and design will be based on the Mars Science Laboratory (MSL) architecture that successfully carried the Curiosity rover to the Martian surface this summer. This will ensure mission costs and risks are as low as possible, while still delivering a highly capable rover with a proven landing system. The mission will constitute a vital component of a broad portfolio of Mars exploration missions in development for the coming decade.

The mission will advance the science priorities of the National Research Council’s 2011 Planetary Science Decadal Survey and responds to the findings of the Mars Program Planning Group established earlier this year to assist NASA in restructuring its Mars Exploration Program.

“The challenge to restructure the Mars Exploration Program has turned from the seven minutes of terror for the Curiosity landing to the start of seven years of innovation,” Grunsfeld said. “This mission concept fits within current and projected Mars exploration budget, builds on the exciting discoveries of Curiosity, and takes advantage of a favorable launch opportunity.”

The specific payload and science instruments for the 2020 mission will be openly competed, following the Science Mission Directorate’s established processes for instrument selection. This process will begin with the establishment of a science definition team that will be tasked to outline the scientific objectives for the mission.

This mission fits within the five-year budget plan in the president’s Fiscal Year 2013 budget request, and is contingent on future appropriations.

Plans also will include opportunities for infusing new capabilities developed through investments by NASA’s Space Technology Program, Human Exploration and Operations Mission Directorate, and contributions from international partners.

________________________

NASA and John Grunsfeld will be hosting a follow-up press conference later today at AGU, which will be streamed live online at 7 p.m. EST/4 p.m. PST. Stay tuned for more information.

 

Vote ‘Curiosity’ as TIME Person of the Year

I Need You ! Vote for ‘Curiosity’ as TIME magazine Person Of The Year. NASA’s new Curiosity Mars rover snapped this Head and Shoulders Self-Portrait on Sol 85 (Nov. 1 , 2012) as Humanity’s emissary to the Red Planet in Search of Signs of Life. Mosaic Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

Caption – I Need You ! Vote for ‘Curiosity’ as TIME magazine Person Of The Year.
NASA’s new Curiosity Mars rover snapped this Self-Portrait on Sol 85 (Nov. 1 , 2012) as Humanity’s emissary to the Red Planet in Search of Signs of Life. Mosaic Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

You can make it happen. Vote Now ! Vote Curiosity !

Vote for ‘Curiosity’ as the Time magazine Person of the Year

Make your voice heard – Help send a message to the Feds to “Save Our Science” as the Fiscal Cliff nears and threatens our Science.

Perhaps you are a doubter. Well think again. Because at this moment NASA’s Curiosity Mars rover has thrust forward into 5th Place, inching ahead of – comedian Stephen Colbert, according to the running tally at TIME’s Person of the Year website.

NASA’s SUV-sized Curiosity Mars rover is the most powerful science robot ever dispatched as Humanity’s emissary to the surface of the Red Planet. She is searching for Signs of Life and may shed light on the ultimate questions – “Are We Alone?” – “Where do We fit In?

Curiosity is NASA’s first Astrobiology mission to Mars since the twin Viking landers of the 1970’s.

TIME’s editors are soliciting your input on worthy candidates for Person of the Year, although they will choose the ultimate winner.

You have until 11:59 p.m. on Dec. 12 to cast your vote. The winner of the people’s choice will be announced on Dec. 14. The magazine itself with the ultimate winner appears on newsstands on Dec. 21

Image caption: Curiosity trundling across Mars surface inside Gale Crater on Sol 24 (Aug. 30, 2012). Colorized mosaic stitched together from Navcam images. This panorama is featured on PBS NOVA ‘Ultimate Mars Challenge’ documentary which premiered on PBS TV on Nov. 14. Credit: NASA / JPL-Caltech / Ken Kremer / Marco Di Lorenzo

Read TIME’s statement about voting for Curiosity:

You may own a cool car — you may even own a truly great car — but it’s a cinch that no matter how fantastic it is, it can never be anything more than the second best car in the solar system. The greatest of all is the Mars Curiosity rover, one ton of SUV-size machine now 160 million miles from Earth and trundling across the Martian surface. It was the rover’s landing on Mars last August that first caught people’s eyes: an improbable operation that required a hovering mother ship to lower the rover to the surface on cables like a $2.5 billion marionette. But it’s the two years of exploration Curiosity has ahead of it — with a suite of instruments 10 times as large as any ever carried to Mars before — that will make real news. NASA built the country one sweet ride, and yes, alas, it’s sweeter than yours.

Cast your vote for Curiosity now, and avoid the long lines – before it’s too late

Ken Kremer

…..

Learn more about Curiosity’s groundbreaking discoveries and NASA missions at my upcoming pair of free presentations for the general public at two colleges in New Jersey:

Dec 6: Free Public lecture titled “Atlantis, The Premature End of America’s Shuttle Program and What’s Beyond for NASA” including Curiosity, Orion, SpaceX and more by Ken Kremer at Brookdale Community College/Monmouth Museum and STAR Astronomy club in Lincroft, NJ at 8 PM

Dec 11: Free Public lecture titled “Curiosity and the Search for Life on Mars (in 3 D)” and more by Ken Kremer at Princeton University and the Amateur Astronomers Association of Princeton (AAAP) in Princeton, NJ at 8 PM – Princeton U Campus at Peyton Hall, Astrophysics Dept.

In an Isolated, Ice-Covered Antarctic Lake Far Below Freezing, Life is Found

Lake Vida lies within one of Antarctica’s cold, arid McMurdo Dry Valleys (Photo: Desert Research Institute)

Even inside an almost completely frozen lake within Antarctica’s inland dry valleys, in dark, salt-laden and sub-freezing water full of nitrous oxide, life thrives… offering a clue at what might one day be found in similar environments elsewhere in the Solar System.


Researchers from NASA, the Desert Research Institute in Nevada, the University of Illinois at Chicago and nine other institutions have discovered colonies of bacteria living in one of the most isolated places on Earth: Antarctica’s Lake Vida, located in Victoria Valley — one of the southern continent’s incredibly arid McMurdo Dry Valleys.

These organisms seem to be thriving despite the harsh conditions. Covered by 20 meters (65 feet) of ice, the water in  Lake Vida is six times saltier than seawater and contains the highest levels of nitrous oxide ever found in a natural body of water. Sunlight doesn’t penetrate very far below the frozen surface, and due to the hypersaline conditions and pressure of the ice water temperatures can plunge to a frigid -13.5 ºC (8 ºF).

Yet even within such a seemingly inhospitable environment Lake Vida is host to a “surprisingly diverse and abundant assemblage of bacteria” existing within water channels branching through the ice, separated from the sun’s energy and isolated from exterior influences for an estimated 3,000 years.

Originally thought to be frozen solid, ground penetrating radar surveys in 1995 revealed a very salty liquid layer (a brine) underlying the lake’s year-round 20-meter-thick ice cover.

“This study provides a window into one of the most unique ecosystems on Earth,” said Dr. Alison Murray, one of the lead authors of the team’s paper, a molecular microbial ecologist and polar researcher and a member of 14 expeditions to the Southern Ocean and Antarctic continent. “Our knowledge of geochemical and microbial processes in lightless icy environments, especially at subzero temperatures, has been mostly unknown up until now. This work expands our understanding of the types of life that can survive in these isolated, cryoecosystems and how different strategies may be used to exist in such challenging environments.”

Sterile environments had to be set up within tents on Lake Vida’s surface so the researchers could be sure that the core samples they were drilling were pristine, and weren’t being contaminated with any introduced organisms.

According to a NASA press release, “geochemical analyses suggest chemical reactions between the brine and the underlying iron-rich sediments generate nitrous oxide and molecular hydrogen. The latter, in part, may provide the energy needed to support the brine’s diverse microbial life.”

“This system is probably the best analog we have for possible ecosystems in the subsurface waters of Saturn’s moon Enceladus and Jupiter’s moon Europa.”

– Chris McKay, co-author, NASA’s Ames Research Center

What’s particularly exciting is the similarity between conditions found in ice-covered Antarctic lakes and those that could be found on other worlds in our Solar System. If life could survive in Lake Vida, as harsh and isolated as it is, could it also be found beneath the icy surface of Europa, or within the (hypothesized) subsurface oceans of Enceladus? And what about the ice caps of Mars? Might there be similar channels of super-salty liquid water running through Mars’ ice, with microbes eking out an existence on iron sediments?

“It’s plausible that a life-supporting energy source exists solely from the chemical reaction between anoxic salt water and the rock,” explained Dr. Christian Fritsen, a systems microbial ecologist and Research Professor in DRI’s Division of Earth and Ecosystem Sciences and co-author of the study.

“If that’s the case,” Murray added, “this gives us an entirely new framework for thinking of how life can be supported in cryoecosystems on earth and in other icy worlds of the universe.”

Read more: Europa’s Hidden Great Lakes May Harbor Life

More research is planned to study the chemical interactions between the sediment and the brine as well as the genetic makeup of the microbial communities themselves.

The research was published this week in the Proceedings of the National Academy of Science (PNAS). Read more on the DRI press release here, and watch a video below showing highlights from the field research.

Funding for the research was supported jointly by NSF and NASA. Images courtesy the Desert Research Institute. Dry valley image credit: NASA/Landsat. Europa image: NASA/Ted Stryk.)

Familiar Sci-Fi Faces Pitch NASA Spinoffs

Spinoffs have never been the primary reason for space exploration, but as NASA has done things that have never been done before, space-derived products and technologies have been developed, producing some side benefits. Some of these little side benefits have ended up saving lives and changing life on Earth for the better.

NASA has recently released three new videos touting the benefits provided by various space ‘byproducts,” starring three well-known faces from sci-fi shows of the past: June “Lost in Space” Lockhart, William “Captain KirK” Shatner and Wil “Acting Ensign” Wheaton. The videos mention how science fiction has become science fact, resulting in new commercial products and services that are tangible returns on investments in space technology.

Continue reading “Familiar Sci-Fi Faces Pitch NASA Spinoffs”

Saturn’s Strange Hexagon – In Living Color!

Color-composite Cassini image of Saturn’s northern hexagon (NASA/JPL/SSI/Jason Major)

Cassini sure has been busy these past few days! After returning some mind-blowing images of the swirling 3,000-km-wide cyclone over Saturn’s north pole the spacecraft pulled back to give a wider view of the ringed giant’s upper latitudes, revealing one of its most curious features: the northern hexagon.

The image above is a color-composite made from raw images acquired by Cassini on November 28 from a distance of 379,268 miles (610,373 kilometers) away. Because the color channels were of a much lower resolution than the clear-filter monochrome image, the color is approximate in relation to individual atmospheric details. Still, it gives an idea of the incredible variation in hues around Saturn’s northern hemisphere as well as clearly showing the uncannily geometric structure of the hexagon.

(Can I get another “WOW”?)

Made of a band of upper-atmospheric winds, for some reason at this latitude the stream forms a six-sided hexagonal shape. The entire structure is about 25,000 km across — large enough for four Earths to fit inside! The polar cyclone can be seen at the very center.

First seen by Voyagers 1 and 2 over 30 years ago the hexagon appears to be fixed with Saturn’s rotation rate, which is a remarkably speedy 0.44 Earth-days (about 10.5 hours.)

“This is a very strange feature, lying in a precise geometric fashion with six nearly equally straight sides,” said atmospheric expert and  Cassini team member Kevin Baines back in 2007. “We’ve never seen anything like this on any other planet. Indeed, Saturn’s thick atmosphere where circularly-shaped waves and convective cells dominate is perhaps the last place you’d expect to see such a six-sided geometric figure, yet there it is.”

As scientists puzzled over the mechanisms behind the geometric feature, they came to the conclusion that not only is it a very natural occurrence, it’s also something that is not uncommon in fluid dynamics… apparently its sides are bound by the eddying storms. (Read more in this article by Nicole Gugliucci.)

Here are some more raw images from Cassini’s Nov. 28 pass:

Amazing! Here we are well over 8 years after arriving at Saturn and Cassini is still astounding us almost daily with views of the ringed world. (I knew it was my favorite planet for a reason!)

As always, stay tuned to Universe Today for more!

Image credits: NASA/JPL/Space Science Institute. Color-composite by Jason Major.

 

Lighting Up Mercury’s Shadowy North Pole

Part of a stereographic projection of Mercury’s north pole

Talk about northern exposure! This is a section of a much larger image, released today by the MESSENGER team, showing the heavily-cratered north pole of Mercury as seen by the MESSENGER spacecraft’s Mercury Dual Imaging System (MDIS) instrument.

See the full-size image below:

Many MDIS images were averaged together to create a mosaic of Mercury’s polar region, which this stereographic projection is centered on. MESSENGER is at its lowest altitude as it passes over Mercury’s northern hemisphere — about  200 kilometers (124 miles), which is just a little over half the altitude of the ISS.

The largest centrally-peaked crater near the center is Prokofiev, named after a 20th-century Russian composer. Approximately 110 km (68 mi.) in diameter, its permanently-shadowed interior is home to radar-bright deposits that are thought to contain water ice.

Even though Mercury is almost three times closer to the Sun than Earth is and hosts searing daytime temperatures of 425ºC (800ºF), there’s virtually no atmosphere to hold or transmit that heat. Nighttime temperatures can reach as low as -185ºC (-300ºF), and since a day on Mercury is 176 Earth days long it gets very cold for quite a long time!

Also, because Mercury’s axis of rotation isn’t tilted like Earth’s, low elevation areas near the poles receive literally no sunlight. Unless vaporized by a meteorite impact any ice gathered inside these deep craters would remain permanently frozen.

Here’s an orthographic projection of the image above, showing what the scene would look like on Mercury — that is, if it was ever fully lit by the Sun, which it isn’t.

Many of the craters on Mercury’s north pole have recently been named after famous artists, authors and composers, such as Kandinsky, Stieglitz, Goethe, and even one named after J.R.R. Tolkien. You can see an annotated image showing the names of Mercury’s north polar craters here.

Read More: “The Hobbit” Author Gets a Crater on Mercury

On November 29, NASA will host a news conference at 2 p.m. EST to reveal new observations from MESSENGER, the first spacecraft to orbit Mercury. The news conference will be carried live on NASA Television and the agency’s website… you can tune in on NASA TV here. 

Image credits: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Curiosity Ramps Up Complexity of Surface Ops with 1st ‘Touch and Go’ Maneuver – Cool Animation

Image Caption: Thanksgiving Greetings from Mars ! Curiosity snaps Head and Shoulders Self-Portrait on Sol 85 while posing at windblown ‘Rocknest’ ripple with eroded rim of Gale Crater in the background. This color mosaic was assembled from Mastcam 34 raw images snapped on Sol 85 (Nov. 1, 2012). See below the utterly cool animation of Curioity’s 1st ever ‘Touch and Go’ maneuver. Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

In the days leading up to Thanksgiving, NASA’s Curiosity mega Mars rover completed her first so-called “touch and go” maneuver – whereby she drives to and inspects an interesting rock and then moves on the same day to the next target of interest.

Check out the totally cool action animation below depicting Curiosity’s first ever “touch and go” movement and a subsequent martian drive of 83 feet (25.3 meters) conducted on Nov. 18.

“The ‘touch and go’ on Sol 102 went well, the data arriving in time for planning Sol 104”, says rover team member Ken Herkenhoff, of the US Geological Survey (USGS).

The science and engineering team guiding Curiosity is commanding her to accomplish ever more sophisticated and bold forays across the floor of Gale crater after finishing more than a month of investigations at the windblown ripple named “Rocknest.

On Nov 16, Curiosity drove 6.2 feet (1.9 meters) to get within arm’s reach of a rock called “Rocknest 3”. She deployed the arm and placed the Alpha Particle X-Ray Spectrometer (APXS) instrument onto the rock, and then took two 10-minute APXS readings of data to ascertain the chemical elements in the rock.

Thereafter Curiosity stowed her 7 foot (2.1 m) long arm and drove eastward toward the next target called “Point Lake”.

Curiosity is now inside the ‘Glenelg’ geologic formation which the science team selected as the first major science destination because it lies at the intersection of three diverse types of geology areas that will help unlock the secrets of Mars’ ancient watery history and evolution to modern times.

Image Caption: Panoramic mosaic shows gorgeous Glenelg snapped by Curiosity on Sol 64 (Oct. 10) with eroded crater rim and base of Mount Sharp in the distance. Curiosity is now touring inside Glenelg. This is a cropped version of the full mosaic as assembled from 75 images acquired by the Mastcam 100 camera. Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

“We have done touches before, and we’ve done goes before, but this is our first ‘touch-and-go’ on the same day,” said Curiosity Mission Manager Michael Watkins of NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “It is a good sign that the rover team is getting comfortable with more complex operational planning, which will serve us well in the weeks ahead.”

During the holiday period, Curiosity is taking high resolution imagery, conducting atmospheric observations and making measurements with the DAN neutron spectrometer and her other state-of-the-art science instruments.

Meanwhile, the Curiosity science team is still ‘chewing over’ the meaning of the results from the first ever scoopful of soil spooned up at ‘Rocknest’ and ingested by the SAM (Sample Analysis at Mars) chemistry instrument on the rover deck that is designed to detect organic molecules – the building blocks of life.

“We’ve got a briefing on Monday [Dec 3] where we’ll discuss our results,” Curiosity project manager John Grotzinger, of Caltech, told me. Those SAM results will be announced to a flurry of interest during the annual meeting of the AGU (American Geophysical Union) being held from Dec 3-7 in San Francisco.

Learn more about Curiosity’s groundbreaking discoveries, SAM and NASA missions at my upcoming pair of free presentations for the general public at two colleges in New Jersey:

Ken Kremer

…..

Dec 6: Free Public lecture titled “Atlantis, The Premature End of America’s Shuttle Program and What’s Beyond for NASA” including Curiosity, Orion, SpaceX and more by Ken Kremer at Brookdale Community College/Monmouth Museum and STAR Astronomy club in Lincroft, NJ at 8 PM

Dec 11: Free Public lecture titled “Curiosity and the Search for Life on Mars (in 3 D)” and more by Ken Kremer at Princeton University and the Amateur Astronomers Association of Princeton (AAAP) in Princeton, NJ at 8 PM – Princeton U Campus at Peyton Hall, Astrophysics Dept.

Is Historic Discovery imminent concerning Martian Organic Chemistry ?

Image caption: Curiosity scoops repeatedly into this Martian soil at windblown ripple dubbed ‘Rocknest’, shown in this mosaic, and delivered samples to the SAM chemistry instrument, on the robots deck, to search for any signatures of organic molecules – the building blocks of life. This color mosaic was stitched together from hi-res color images taken by the robots 34 mm Mastcam camera on Sols 93 and 74. Credit: NASA / JPL-Caltech / MSSS/Ken Kremer / Marco Di Lorenzo

Has Curiosity made a ‘Historic’ science discovery with the SAM (Sample Analysis at Mars) chemistry instrument that analyzes Martian soil (see mosaic above) and is designed to detect organic molecules – the building blocks of life? Has Curiosity unambiguously and directly detected the first signatures of organics on Mars ? Is an announcement imminent?

Speculation is rampant that NASA’s Curiosity Mars rover has made an earth-shaking discovery ‘for the history books’ , following a radio interview by NPR’s Joe Palca with the mission’s Principal Investigator, John Grotzinger, while sitting in his office at Caltech last week. NPR reported the story on Tuesday, Nov. 20.

“We’ve got a briefing on Monday [Dec 3] where we’ll discuss our results,” John Grotzinger told me.

Grotzinger will describe the SAM data and their potentially pivotal implications at the annual meeting of the AGU (American Geophysical Union) being held from Dec 3-7 in San Francisco. Many papers and results from the first three months of the Curiosity Mars Science Lab (MSL) mission will be presented at the AGU meeting.

“The science team is analyzing data from SAM’s soil inspection, but not ready to discuss yet,” JPL Press spokesman Guy Webster informed me today.

It’s the Thanksgiving holiday period here in the US so the answers will wait a tad longer.


Image Caption: Curiosity Self Portrait with Mount Sharp at Rocknest ripple in Gale Crater. Curiosity used the Mars Hand Lens Imager (MAHLI) camera on the robotic arm to image herself and her target destination Mount Sharp in the background.SAM chemistry suite located on robot’s deck near Mast. To the left is the northern rim wall of Gale Crater. This color panoramic mosaic was assembled from raw images snapped on Sol 85 (Nov. 1, 2012). Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

Curiosity had been collecting and analyzing Martian soil samples for more than a month at a windblown ripple called ‘Rocknest’. So far Curiosity has scooped into the Martian soil five times and delivered a single sample to SAM and two to the adjacent CheMin chemistry instrument.

“This data is gonna be one for the history books,” Grotzinger went on to say to NPR. “It’s looking really good.”

JPL Press spokesman Guy Webster advises caution and patience while damping down euphoria. He told me that the team is still trying to interpret and understand the analysis from SAM and seeking to clarify their meaning before making any premature conclusions.

“This is no change from the policy with past results from the mission, such as SAM’s atmosphere analysis or CheMin’s soil sample analysis: The scientists want to gain confidence in the findings before taking them outside of the science team,” Webster informed me.

“As for history books, the whole mission is for the history books. John was delighted about the quality and range of information coming in from SAM during the day a reporter happened to be sitting in John’s office last week. He has been similarly delighted by results at other points during the mission so far,” Webster said.

Organic molecules are the basis for life as we know it, and they have never before been discovered on the Red Planet’s surface. I am an organic chemist and to me the detection of organics on Mars would indeed be “Earth-shaking”. But just a finding of organics alone does NOT mean we discovered life. Organics are a prerequisite to life. Life requires finding much more complex molecules, like amino acids and far more beyond that.

Furthermore, finding signatures of organics so close to the surface might be a surprising result when one recalls that highly destructive ionizing radiation bombards the Martian topsoil 24/7.

So, it’s wise for the MSL team to be abundantly cautious and recheck their results multiple times. They wisely waited for further data before prematurely announcing the discovery of Martian methane. Initial SAM atmospheric measurements detecting methane turned out to be false – they actually originated from contamination by residual traces of Florida air trapped in the interior chambers of SAM and were carried all the way to Mars.

If organics are detected in the dusty dunes at Rocknest, the implications could be vast and potentially point to their widespread distribution across Gale crater and beyond.

As renowned astronomer Carl Sagan once said; ‘Extraordinary claims require extraordinary evidence.”

Stay tuned.

Learn more about Curiosity’s groundbreaking discoveries, SAM and NASA missions at my upcoming free public presentations:

Ken Kremer

…..

Dec 6: Free Public lecture titled “Atlantis, The Premature End of America’s Shuttle Program and What’s Beyond for NASA” including Curiosity, Orion, SpaceX and more by Ken Kremer at Brookdale Community College/Monmouth Museum and STAR Astronomy club in Lincroft, NJ at 8 PM

Dec 11: Free Public lecture titled “Curiosity and the Search for Life on Mars (in 3 D)” and more by Ken Kremer at Princeton University and the Amateur Astronomers Association of Princeton (AAAP) in Princeton, NJ at 8 PM.

I Am SAM

Curiosity's SAM instrument intake tubes (NASA/JPL-Caltech/MSSS)

Portrait of Curiosity assembled from raw images acquired with MAHLI on Sol 85 (Nov. 11. 2012 UTC) Credit: NASA/JPL-Caltech/Malin Space Science Systems. Composite by Jason Major.

Yesterday Mars Science Laboratory principal investigator John Grotzinger set the entire space science world abuzz with a tantalizing promise of “earthshaking” news on the horizon — literally “one for the history books,” as he put it in an interview with NPR. It seems one of Curiosity’s main science tools, the Sample Analysis at Mars (SAM) instrument, has discovered… something… within recently-gathered samples, possibly in windblown-material scooped at a site called “Rocknest” earlier this month.

For now, though, the MSL team is keeping quiet on any more details until they’re reasonably sure they know what they have. Speculations abound — some serious, some not — but the bottom line is we’ll all have to wait for the official news to be released. In the meantime, here’s your chance to learn a little more about a fascinating high-tech Mars-tasting gadget called SAM.

About the size of a window air conditioning unit, the Sample Analysis at Mars (SAM) instrument is contained within the front section of NASA’s Curiosity rover. Actually a suite of three instruments, SAM consists of a Gas Chromatograph (GC), a Quadrupole Mass Spectrometer (QMS), and a Tunable Laser Spectrometer (TLS), as well as systems that manipulate and process samples.

Annotated photo of SAM with side covers removed

Although mostly contained entirely within Curiosity, SAM does have two small inlet tubes that allow access for soil samples gathered with the rover’s arm, as well as inlets for atmospheric gases.

On Earth all of these different instruments would fill a lab. But to fit them all inside the Curiosity, which is about the size of a Mini Cooper (but only half the mass), they were painstakingly reduced in size to fit within a single rectangular structure about 40 kg (88 lbs).

Here’s how SAM’s components work:

The Gas Chromatograph (GC)

The GC has six complementary chromatographic columns. The GC assembly sorts, measures, and identifies gases it separates from mixtures of gases by pushing the mixed gases through long, coiled tubes with a stream of helium gas. It sorts the gas molecules by weight: they emerge from the tube in order from lightest (out first) to heaviest (out last). Once the gases are sorted, the GC can direct quantities of the separated gases into the QMS or TLS for further analysis.

The Quadrupole Mass Spectrometer (QMS)

The QMS identifies gases by the molecular weight and electrical charge of their ionized states. It fires high-speed electrons at the molecules, breaking them into fragments. It then sorts the fragments by weight with AC and DC electric fields. The spectra generated by the QMS detector uniquely identify the molecules in the gases.

The Tunable Laser Spectrometer (TLS)

The TLS uses absorption of light at specific wavelengths to measure concentrations and isotope ratios of specific chemicals important to life: methane, carbon dioxide, and water vapor. Isotopes are variants of the same element with different atomic weights, and their ratios can provide information about Mars’ geologic — and possibly biologic — history.

The QMS and the GC can operate together in a GCMS mode for separation and definitive identification of organic compounds. The TLS obtains precise isotope ratios for C and O in carbon dioxide and measures trace levels of methane and its carbon isotope.

In addition to these three analytical instruments SAM also has mechanical support devices: a sample manipulation system (SMS) and a Chemical Separation and Processing Laboratory (CSPL). The CSPL includes high conductance and micro valves, gas manifolds with heaters and temperature monitors, chemical and mechanical pumps, carrier gas reservoirs and regulators, pressure monitors, pyrolysis ovens, and chemical scrubbers and getters.

The SMS has a wheel of 74 small cups where soil samples gathered by Curiosity’s robotic arm are prepared for analysis. 59 are quartz cups that are small ovens which can be heated to very high temperatures to pull gases from the powdered samples. 9 sealed cups are filled with chemical solvents for lower-temperature experiments designed to search for organic compounds. The other 9 cups contain calibration materials.

With this suite of precision tools SAM is specifically designed to search for evidence of a habitable environment on Mars, whether past or present. As it takes up over half of the rover’s scientific payload area, you could say that Curiosity itself is specifically designed to carry SAM around Mars (although we won’t tell that to the other instruments!)

Knowing only that the “exciting” news from Grotzinger and his team is coming from data gathered by SAM, one could safely assume that it has something to do with a discovery of organic chemistry of some sort… but we’ll all have to wait a few more weeks to know for sure. Still, as that is the primary objective of MSL and Curiosity is barely over 100 Martian days into its mission, even the smallest hint of big news has everyone’s attention.

Like any big institution, NASA would love to trumpet a major finding, especially at a time when budget decisions are being made.

– Joe Palca, NPR article

“This data is gonna be one for the history books,” said Grotzinger. “It’s looking really good.” (Read more here.)

Find out more about SAM and Curiosity’s other instruments here, and check out a quick video overview of SAM below:

(And for an even more in-depth look at how SAM works, read Emily Lakdawalla’s article on The Planetary Society’s blog here.)

The result of an international effort between scientists and engineers, SAM was built and tested at NASA Goddard Space Flight Center in Greenbelt, Maryland. Paul Mahaffy is SAM’s Principal Investigator.

Additional source: NASA Goddard Space Flight Center SAM site. Inset images: SAM assembly/SAM solid sample inlets. Image credits: NASA/JPL-Caltech. 

________________

UPDATE: Apparently the NPR article that kickstarted all the rumors of big discoveries from Curiosity was a big misunderstanding… while data from the rover is “one for the history books,” according to P.I. John Grotzinger, that pertained to the mission as a whole — not any individual finding. Still, news from the MSL mission will be presented on Dec. 3 at the American Geophysical Union conference in San Francisco.

“Rumors and speculation that there are major new findings from the mission at this early stage are incorrect… At this point in the mission, the instruments on the rover have not detected any definitive evidence of Martian organics.” – JPL news release, Nov. 29, 2012

Read more here.