Spectacular Launch of Most Powerful Atlas Completes Constellation of Navy’s Advanced Tactical Comsats – Gallery

A United Launch Alliance (ULA) Atlas V rocket carrying the MUOS-5  mission lifts off from Space Launch Complex-41 at 10:30 a.m. EDT.  Credit:  United Launch Alliance
A United Launch Alliance (ULA) Atlas V rocket carrying the MUOS-5 mission lifts off from Space Launch Complex-41 at 10:30 a.m. EDT on June 24, 2016. Credit: United Launch Alliance

Today’s (June 24) spectacular launch of the most powerful version of the venerable Atlas V rocket from the sunshine state completes the orbital deployment of a constellation of advanced tactical communications satellites for the U.S. Navy.

A United Launch Alliance (ULA) Atlas V rocket successfully launched the massive MUOS-5 satellite into clear blue skies from Space Launch Complex-41 on Cape Canaveral Air Force Station, Florida, at 10:30 a.m. EDT – on its way to a geosynchronous orbit location approximately 22,000 miles (37,586 km) above the Earth.

Note: Check back again for an expanding gallery of launch photos and videos

The Mobile User Objective System-5 (MUOS-5) satellite is the last in a five-satellite constellation that will provide military forces with significantly improved and assured communications worldwide. Lockheed Martin is the prime contractor for the MUOS system.

As launch time neared the weather odds improved to 100% GO and Atlas rumbled off the pad for on time launch that took place at the opening of a 44 minute window.

The launch was broadcast live on a ULA webcast.

The 206 foot tall Atlas rocket roared to space on an expanding plume of smoke and crackling fire from the first stage liquid and solid fueled engines generating over 2.5 million pounds of liftoff thrust.

Their contribution complete, all 5 solid rocket motors were jettisoned with seconds about 2 minutes after liftoff as the liquid fueled first stage continued firing.

The spent first stage separated about 5 minutes after liftoff, as the Centaur second stage fires up for the first of three times over almost three hours to deliver the hefty payload to orbit.

Blastoff of United Launch Alliance (ULA) Atlas V rocket on MUOS-5  mission from Space Launch Complex-41 on June 24, 2016.  Credit: Lane Hermann
Blastoff of United Launch Alliance (ULA) Atlas V rocket on MUOS-5 mission from Space Launch Complex-41 on June 24, 2016. Credit: Lane Hermann

“We are honored to deliver the final satellite in the MUOS constellation for the U.S. Navy,” said Laura Maginnis, ULA vice president, Custom Services, in a statement.

“Congratulations to our navy, air force and Lockheed Martin mission partners on yet another successful launch that provides our warfighters with enhanced communications capabilities to safely and effectively conduct their missions around the globe.”

This is the fifth satellite in the MUOS series and will provide military users up to 16 times more communications capability over existing systems, including simultaneous voice, video and data, leveraging 3G mobile communications technology.

Long plume from MUOS-5 Atlas V Launch by United Launch Alliance from Space Launch Complex-41 on June 24, 2016.  Credit: Michael Seeley
Long plume from MUOS-5 Atlas V Launch by United Launch Alliance from Space Launch Complex-41 on June 24, 2016. Credit: Michael Seeley

With MUOS-5 in orbit the system’s constellation is completed.

MUOS-5 will serve as an on orbit spare. It provides the MUOS network with near-global coverage. Communications coverage for military forces now extends further toward the North and South poles than ever before, according to Lockheed Martin officials.

“Like its predecessors, the MUOS-5 satellite has two payloads to support both new Wideband Code Division Multiple Access (WCDMA) waveform capabilities, as well as the legacy Ultra High Frequency (UHF) satellite system. On orbit, MUOS-5 will augment the constellation as a WCDMA spare, while actively supporting the legacy UHF system, currently used by many mobile forces today.”

The prior MUOS-4 satellite was launched on Sept. 2, 2015 – as I reported here.

The 20 story tall Atlas V launched in its most powerful 551 configuration and performed flawlessly.

United Launch Alliance (ULA) Atlas V rocket carrying MUOS-5 military comsat streaks to orbit atop a vast exhaust plume after liftoff from Space Launch Complex-41 on June 24, 2016.  Credit: Jillian Laudick
United Launch Alliance (ULA) Atlas V rocket carrying MUOS-5 military comsat streaks to orbit atop a vast exhaust plume after liftoff from Space Launch Complex-41 on June 24, 2016. Credit: Jillian Laudick

The vehicle includes a 5-meter diameter payload fairing and five solid rocket boosters that augment the first stage. The Atlas booster for this mission was powered by the RD AMROSS RD-180 engine and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

The RD-180 burns RP-1 (Rocket Propellant-1 or highly purified kerosene) and liquid oxygen and delivers 860,200 lb of thrust at sea level.

And the rocket needed all that thrust because the huge MUOS-5 was among the heftiest payloads ever lofted by an Atlas V booster, weighing in at some 15,000 pounds.
The Centaur upper stage was fired a total of three times.

For this mission the payload fairing was outfitted with an upgraded and advanced acoustic system to beet shield the satellite from the intense vibrations during the launch sequence.

This Atlas launch had been delayed several months to rectify a shortfall in the first stage thrust that occurred during the prior mission launching the Orbital ATK OA-6 cargo freighter in March 2016 on a contract mission for NASA to resupply the International Space Station (ISS).

The launch comes just two weeks after blastoff of the ULA Delta IV Heavy, the worlds most powerful rocket, on a mission to deliver a top secret spy satellite to orbit – as I witnessed and reported on here.

“I am so proud of the team for all their hard work and commitment to 100 percent mission success,” Maginnis added.

“It is amazing to deliver our second national security payload from the Cape in just two weeks. I know this success is due to our amazing people who make the remarkable look routine.”

The 15,000 pound MUOS payload is a next-generation narrowband tactical satellite communications system designed to significantly improve ground communications for U.S. forces on the move.

Here’s a detailed mission profile video describing the launch events:

Video caption: Atlas V MUOS-5 Mission Profile launched on June 24, 2016 from Cape Canaveral Air force Station. Credit: ULA

The launch was supported by the 45th Space Wing.

“Today’s successful launch is the culmination of the 45th Space Wing, Space and Missile Systems Center, Navy and ULA’s close partnership and dedicated teamwork,” said Brig. Gen. Wayne Monteith, 45th Space Wing commander and mission Launch Decision Authority, in a statement.

“We continue our unwavering focus on mission success and guaranteeing assured access to space for our nation, while showcasing why the 45th Space Wing is the ‘World’s Premiere Gateway to Space.”

Watch this exciting launch highlights video reel from ULA – including deployment of MUOS-5!

The MUOS-5 launch marked the 63rd Atlas V mission since the vehicle’s inaugural launch in August 2002. To date seven flights have launched in the 551 configuration. These include all four prior MUOS missions as well as NASA’s New Horizons mission to Pluto and the Juno mission to Jupiter.

Watch my up close remote launch video from the pad with hurling rocks:

Video caption: The sounds and fury of a ULA Atlas V 551 rocket blast off carrying Lockheed Martin built MUOS-5 tactical communications satellite to geosynchronous orbit for US Navy on June 24, 2016 at 10:30 a.m. EDT from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fl, as seen in this up close video from remote camera positioned at pad. Credit: Ken Kremer/kenkremer.com

Watch this compilation of dramatic launch videos from Jeff Seibert.

Video Caption: MUOS-5 launch compilation on ULA Atlas 5 rocket on 6/24/2016 from Pad 41 of CCAFS. Credit: Jeff Seibert

The Navy's fifth Mobile User Objective System (MUOS) is encapsulated inside an Atlas V five-meter diameter payload fairing.  Credit: ULA
The Navy’s fifth Mobile User Objective System (MUOS) is encapsulated inside an Atlas V five-meter diameter payload fairing. Credit: ULA

The next Atlas V launch is slated for July 28 with the NROL-61 mission for the National Reconnaissance Office (NRO).

Blastoff of MUOS-4 US Navy communications satellite on United Launch Alliance Atlas V rocket from pad 41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Ken Kremer/kenkremer.com
Blastoff of MUOS-4 US Navy communications satellite on United Launch Alliance Atlas V rocket from pad 41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

United Launch Alliance (ULA) Atlas V rocket poised for launch on MUOS-5  mission from Space Launch Complex-41 on June 24, 2016.  Credit: Lane Hermann
United Launch Alliance (ULA) Atlas V rocket poised for launch on MUOS-5 mission from Space Launch Complex-41 on June 24, 2016. Credit: Lane Hermann
Artist’s concept of a MUOS satellite in orbit. Credit: Lockheed Martin
Artist’s concept of a MUOS satellite in orbit. Credit: Lockheed Martin
MUOS-5 mission logo. Credit: ULA
MUOS-5 mission logo. Credit: ULA
A United Launch Alliance (ULA) Atlas V rocket carrying the MUOS-5  mission lifts off from Space Launch Complex-41 at 10:30 a.m. EDT on June 24, 2016.  Credit:  United Launch Alliance
A United Launch Alliance (ULA) Atlas V rocket carrying the MUOS-5 mission lifts off from Space Launch Complex-41 at 10:30 a.m. EDT on June 24, 2016. Credit: United Launch Alliance

Fuel Control Valve Faulted for Atlas Launch Anomaly, Flights Resume Soon

A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

A critical fuel control valve has been faulted for the Atlas V launch anomaly that forced a premature shutdown of the rockets first stage engines during its most recent launch of a Cygnus cargo freighter to the International Space Station (ISS) last month – that nevertheless was successful in delivering the payload to its intended orbit.

Having identified the root cause of the engine shortfall, workers for Atlas rocket builder United Launch Alliance (ULA), have now stacked the booster slated for the next planned liftoff in the processing facility at their Cape Canaveral launch pad, the company announced in a statement Friday.

The Atlas rockets Centaur upper stage fired longer than normal after the first stage anomaly, saving the day by making up for the significant lack of thrust and “delivering Cygnus to a precise orbit, well within the required accuracy,” ULA said.

ULA says it hopes to resume launches of the 20 story tall rocket as soon as this summer, starting with the MUOS-5 communications satellite payload for the U.S. Navy.

Following a painstaking investigation to fully evaluate all the data, the ULA engineering team “determined an anomaly with the RD-180 Mixture Ratio Control Valve (MRCV) assembly caused a reduction in fuel flow during the boost phase of the flight,” the company confirmed in a statement.

The Atlas V first stages are powered by the Russian-made RD AMROSS RD-180 engines. The dual nozzle powerplants have been completely reliable in 62 Atlas launches to date.

The RD-180s are fueled by a mixture of RP-1 kerosene and liquid oxygen stored in the first stage.

Up close view of dual nozzle RD-180 first stage engines firing during blastoff of United Launch Alliance (ULA) Atlas V rocket carrying the GPS IIF-12 mission on Feb. 5, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fla.  Credit: Ken Kremer/kenkremer.com
Up close view of dual nozzle RD-180 first stage engines firing during blastoff of United Launch Alliance (ULA) Atlas V rocket carrying the GPS IIF-12 mission on Feb. 5, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

The Centaur RL10C-1 second stage powerplant had to make up for a thrust and velocity deficiency resulting from a 6 second shorter than planned firing of the first stage RD-180 engines.

“The Centaur [upper stage] burned for longer than planned,” Lyn Chassagne, ULA spokesperson, told Universe Today.

Indeed Centaur fired for a minute longer than planned to inject Cygnus into its proper orbit.

“The first stage cut-off occurred approximately 6 seconds early, however the Centaur was able to burn an additional approximately 60 seconds longer and achieve mission success, delivering Cygnus to its required orbit,” said ULA.

MUOS-5 was originally supposed to blastoff on May 5. But the liftoff was put on hold soon after the Atlas V launch anomaly experienced during the March 22, 2016 launch of the Orbital ATK Cygnus OA-6 supply ship to the ISS for NASA.

Since then, ULA mounted a thorough investigation to determine the root cause and identify fixes to correct the problem with RD-180 Mixture Ratio Control Valve (MRCV) assembly, while postponing all Atlas V launches.

ULA has inspected, analyzed and tested their entire stockpile of RD-180 engines.

Last Friday, the Atlas V first stage for the MUOS-5 launch was erected inside ULA’s Vertical Integration Facility (VIF) at Space Launch Complex-41 on Cape Canaveral Air Force Station, Florida. The five solid motors have been attached and the Centaur is next.

In this configuration, known as Launch Vehicle on Stand (LVOS) operation, technicians can further inspect and confirm that the RD-180 engines are ready to support a launch.

The two stage Atlas V for MUOS-5 will launch in its most powerful 551 configuration with five solid rocket boosters attached to the first stage, a single engine Aerojet Rocketdyne RL10C-1 Centaur upper stage and a 5-meter-diameter payload fairing.

The RD-180s were supposed to fire for 255.5 seconds, or just over 4 minutes. But instead they shut down prematurely resulting in decreased velocity that had to be supplemented by the Centaur RL10C-1 to get to the intended orbit needed to reach the orbiting outpost.

The liquid oxygen/liquid hydrogen fueled Aerojet Rocketdyne RL10C-1 engine was planned to fire for 818 seconds or about 13.6 minutes. The single engine produces 22,900 lbf of thrust.

The Atlas V first and second stages are preprogrammed to swiftly react to a wide range of anomalous situations to account for the unexpected. The rocket and launch teams conduct countless simulations to react to off nominal situations.

“The Atlas V’s robust system design, software and vehicle margins enabled the successful outcome for this mission,” Chassagne said.

“As with all launches, we will continue to focus on mission success and work to meet our customer’s needs.”

ULA currently sports a year’s long manifest of future Atlas V launches in the pipeline. It includes a wide range of payloads for NASA, US and foreign governments, and military and commercial customers – all of who are depending on ULA maintaining its string of 106 straight launches with a 100% record of success since the company formed in 2006.

The Orbital ATK Cygnus CRS-6 space freighter was loaded with 3513 kg (7700 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware for the orbital laboratory in support of over 250 research experiments being conducted on board by the Expedition 47 and 48 crews.

Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a Cygnus cargo spacecraft is being prepared for the upcoming Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22.  Credit: Ken Kremer/kenkremer.com
Inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, a Cygnus cargo spacecraft was being prepared for the Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus lifted off atop a United Launch Alliance Atlas V rocket on March 22. Credit: Ken Kremer/kenkremer.com

Cygnus successfully arrived and berthed at the ISS on March 26 as planned.

An exact date for the MUOS-5 launch has yet to be confirmed on the Eastern Range with the US Air Force.

ULA is in the process of coordinating launch dates with customers for their remaining Atlas V launches in 2016.

MUOS-4 US Navy communications satellite stowed inside huge 5 meter diameter payload fairing atop Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL set for launch on Sept. 2, 2015. EDT. Credit: Ken Kremer/kenkremer.com
MUOS-4 US Navy communications satellite stowed inside huge 5 meter diameter payload fairing atop Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL set for launch on Sept. 2, 2015. EDT. Credit: Ken Kremer/kenkremer.com

The 15,000 pound MUOS payload is a next-generation narrowband tactical satellite communications system designed to significantly improve ground communications for U.S. forces on the move.

ULA says they expect minimal impact and foresee completing all launches planned for 2016, including the top priority OSIRIS-REx asteroid mission for NASA which has a specific launch window requirement.

Blastoff of MUOS-4 US Navy communications satellite on United Launch Alliance Atlas V rocket from pad 41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Ken Kremer/kenkremer.com
Blastoff of MUOS-4 US Navy communications satellite on United Launch Alliance Atlas V rocket from pad 41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com
MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com

Boeing Rejects Aerojet Rocketdyne Bid for ULA and Affirms Vulcan Rocket Support, Lockheed Martin Noncommittal

Boeing has officially and publicly rejected a bid by Aerojet Rocketdyne to buy rocket maker United Launch Alliance (ULA), which the firm co-owns with rival aerospace giant Lockheed Martin. Furthermore Boeing affirmed support for ULA’s new next generation Vulcan rocket now under development, a spokesperson confirmed to Universe Today.

Aerojet Rocketdyne, which supplies critical rocket engines powering ULA’s fleet of Atlas and Delta rockets, recently made an unsolicited offer to buy ULA for approximately $2 Billion in cash, as Universe Today reported last week.

The Vulcan is planned to replace all of ULA’s existing rockets – which are significantly more costly than those from rival launch provider SpaceX, founded by billionaire entrepreneur Elon Musk.

Boeing never “seriously entertained” the Aerojet-Rocketdyne buyout offer, Universe Today confirmed with Boeing spokesperson Cindy Anderson.

Meanwhile in stark contrast to Boeing, Lockheed Martin has “no comment” regarding the Aerojet-Rocketdyne offer to buy ULA, Universe Today confirmed with Lockheed Martin Director External Communications Matt Kramer.

Furthermore Lockheed Martin is not only noncommittal about the future of ULA but is also “currently assessing our options” concerning the development of ULA’s Vulcan rocket, Kramer told me.

“With regard to reports of an unsolicited proposal for ULA, it is not something we seriously entertained for a number of reasons,” Boeing spokesperson Anderson told Universe Today.

“Regarding Aerojet and ULA, as a matter of policy Lockheed Martin does not have a comment,” Lockheed Martin spokesman Kramer told Universe Today.

Vulcan - United Launch Alliance (ULA)  next generation rocket is set to make its debut flight in 2019.  Credit: ULA
Vulcan – United Launch Alliance (ULA) next generation rocket is set to make its debut flight in 2019. Credit: ULA

ULA was formed in 2006 as a 50:50 joint venture between Lockheed Martin and Boeing that combined their existing expendable rocket fleet families – the Atlas V and Delta IV – under one roof.

Who owns ULA is indeed of significance to all Americans – although most have never head of the company – because ULA holds a virtual monopoly on launches of vital US government national security payloads and the nation’s most critical super secret spy satellites that safeguard our national defense 24/7. ULA’s rocket fleet also launched scores of NASA’s most valuable science satellites including the Curiosity Mars rover, Dawn and New Horizons Pluto planetary probe.

Since 2006 ULA has enjoyed phenomenal launch success with its venerable fleet of Atlas V and Delta IV rockets.

“ULA is a huge part of our strategic portfolio going forward along with our satellites and manned space business. This bid we’ve really not spent much time on it at all because we’re focusing on a totally different direction,” said Chris Chadwick, president and chief executive of Boeing Defense, Space & Security, on Sept. 16 at the Air Force Association’s annual technology expo in National Harbor, Maryland – according to a report by Space News.

Boeing offered strong support for ULA and the Vulcan rocket.

Vulcan is ULA’s next generation rocket to space that can propel payloads to low Earth orbit as well as throughout the solar system – including Pluto. It is slated for an inaugural liftoff in 2019.

Vulcan’s continued development is being funded by Lockheed Martin and Boeing, but only on a quarterly basis.

The key selling point of Vulcan is that it will be an all American built rocket and it will dramatically reduce launch costs to compete toe to toe with the SpaceX Falcon rocket family.

“To be successful and survive ULA needs to transform to be more of a competitive company in a competitive environment,” ULA VP Dr. George Sowers told Universe Today in a wide ranging interview regarding the rationale and goals of the Vulcan rocket.

And there is a heated competition on which of two companies will provide the new American built first stage engine that will replace the Russian-built RD-180 that currently powers the ULA Atlas V.

Vulcan’s first stage will most likely be powered by the BE-4 engine being developed by the secretive Blue Origin aerospace firm owned by billionaire Jeff Bezos.

This week ULA announced an expanded research agreement with Blue Origin about using the BE-4.

But ULA is also evaluating the AR-1 liquid fueled engine being developed by Aerojet-Rocketdyne – the company that wants to buy ULA.

The Atlas V dependence on Russia’s RD-180’s landed at the center of controversy after Russia invaded Crimea in the spring of 2014, raising the ire of Congress and enactment of a ban on their use several years in the future.

ULA is expected to make a final decision on which first stage engine to use between Blue Origin and Aerojet-Rocketdyne, sometime in 2016.

The engine choice would clearly be impacted if Aerojet-Rocketdyne buys ULA.

Boeing for its part says they strongly support ULA and continued development of the Vulcan.

“Boeing is committed to ULA and its business, and to continued leadership in all aspects of space, as evidenced by the recent announcement of an agreement with Blue Origin,” Boeing spokesperson Anderson told me.

Lockheed Martin in complete contrast did not express any long term commitment to Vulcan and just remarked they were merely “actively evaluating continued investment,” as is their right as a stakeholder.

“We have made no long-term commitments on the funding of a new rocket, and are currently assessing our options. The board is actively evaluating continued investment in the new rocket program and will continue to do so,” Lockheed Director, External Communications Matt Kramer told Universe Today.

Another factor is that Aerojet-Rocketdyne has also sought to buy the rights to manufacture the Atlas V from ULA, which is currently planned to be retired several years after Vulcan is introduced, officials have told me.

MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com
Aerojet-Rocketdyne made a bid to buy ULA, manufacturer of the Atlas V, for approximately $2 Billion. MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com

The Atlas V enjoys unparalleled success. Earlier this month on Sept. 2, ULA conducted its 99th launch with the successful blastoff of an Atlas V with the MUOS-4 military communications satellite from Cape Canaveral Air Force Station for the U.S. Navy.

Boeing has also chosen the Atlas V as the launcher that will soon propel Americans astronauts riding aboard the commercially developed Boeing CST-100 ‘Starliner’ taxi to the Earth-orbiting International Space Station (ISS).

Starliner will eventually blastoff atop Vulcan after the Atlas V is retired in the next decade.

Lockheed provided me this update on Vulcan and ULA on Sept 21:

“Lockheed Martin is proud of ULA’s unparalleled track record of mission success, with 99 consecutive successful launches to date. We support the important role ULA plays in providing the nation with assured access to space. ULA’s Vulcan rocket takes the best performance elements of Atlas and Delta and combines them in a new system that will be superior in reliability, cost, weight, and capability. The government is working to determine its strategy for an American-made engine and future launch services. As they make those determinations we’ll adjust our strategy to make sure we’re aligned with the government’s objectives and goals.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

First view of upper half of the Boeing CST-100 'Starliner' crewed space taxi unveiled at the Sept. 4, 2015 Grand Opening ceremony held in the totally refurbished C3PF manufacturing facility at NASA's Kennedy Space Center. This will be part of the first Starliner crew module known as the Structural Test Article (STA) being built at Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at KSC. Credit: Ken Kremer /kenkremer.com
First view of upper half of the Boeing CST-100 ‘Starliner’ crewed space taxi unveiled at the Sept. 4, 2015 Grand Opening ceremony held in the totally refurbished C3PF manufacturing facility at NASA’s Kennedy Space Center. This will be part of the first Starliner crew module known as the Structural Test Article (STA) being built at Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at KSC. Credit: Ken Kremer /kenkremer.com

Construction of Crew Access Tower Starts at Atlas V Pad for Boeing ‘Starliner’ Taxi to ISS

The first tier of seven tiers for Crew Access Tower is moved from its construction yard to Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on Sept 9, 2015. The tower will provide access at the pad for astronauts and ground support teams to the Boeing CST-100 Starliner launching atop a United Launch Alliance Atlas V rocket. Photo credit: NASA/Dmitrios Gerondidakis
Story/photos updated[/caption]

KENNEDY SPACE CENTER, FL – Restoring America’s human path back to space from US soil kicks into high gear at last as construction starts on erecting the new crew access tower on the Atlas V launch pad that will soon propel Americans astronauts riding aboard the commercially developed Boeing CST-100 ‘Starliner’ taxi to the Earth-orbiting International Space Station (ISS).

The last hurdle to begin stacking the crew access tower at the United Launch Alliance Atlas V complex-41 launch pad on Cape Canaveral Air Force Station, Florida was cleared with the magnificent predawn blastoff of the U.S. Navy’s MUOS-4 communications satellite on Sept. 2 – following a two day weather delay due to Tropical Storm Erika.

“Everything is on schedule,” Howard Biegler, ULA’s Human Launch Services Lead, told Universe Today during an exclusive interview. “The new 200-foot-tall tower structure goes up rather quickly at launch pad 41.”

The access tower essentially functions as the astronauts walkway to the stars.

“We start stacking the crew access tower [CAT] after the MUOS-4 launch and prior to the next launch after that of Morelos-3,” Beigler said in a wide ranging interview describing the intricately planned pad modifications and tower construction at the Atlas V Space Launch Complex 41 facility at Cape Canaveral.

Depending on the always tricky weather at the Cape, more than half the tower should be “installed prior to MORELOS-3’s launch on Oct. 2. The balance of the CAT will take form after the launch.”

The first tier of the new Crew Access Tower for the Boeing CST-100 Starliner arrives at Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida.   The tower will provide access at the pad for astronauts and ground support teams  to the Boeing CST-100 Starliner launching atop a United Launch Alliance Atlas V rocket.   Photo credit: NASA/Dmitrios Gerondidakis
The first tier of the new Crew Access Tower for the Boeing CST-100 Starliner arrives at Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on Sept 9, 2015. The tower will provide access at the pad for astronauts and ground support teams to the Boeing CST-100 Starliner launching atop a United Launch Alliance Atlas V rocket. Photo credit: NASA/Dmitrios Gerondidakis

The crew access tower is a critical space infrastructure element and absolutely essential for getting Americans back to space on American rockets for the first time since NASA’s shuttles were retired in 2011. That action forced our total dependence on the Russian Soyuz capsule for astronaut rides to the space station.

Boeing was awarded a $4.2 Billion contract in September 2014 by NASA Administrator Charles Bolden to complete development and manufacture of the CST-100 space taxi under the agency’s Commercial Crew Transportation Capability (CCtCap) program and NASA’s Launch America initiative. SpaceX also received a NASA award worth $2.6 Billion to build the Crew Dragon spacecraft for launch atop the firms man-rated Falcon 9 rocket.

Starliner is a key part of NASA’s overarching strategy to send Humans on a “Journey to Mars” in the 2030s.

The tower is of modular design for ease of assembly at the always busy Atlas launch pad.

“The crew tower is comprised of seven major tiers, or segments,” Beigler explained. “The building of the tiers went right on schedule. Each tier is about 20 feet square and 28 feet tall.”

Five of the seven tiers will be installed ahead of the next Atlas launch in early October, depending on the weather which has been difficult at the Cape.

“Our plan is to get 5 tiers and a temporary roof installed prior to MORELOS-3’s launch on October 2.”

“We have been hit hard with weather and are hopeful we can gain some schedule through the weekend. The balance of the CAT will take form after the 10/2 launch with the 7th tier planned to go up on 10/13 and roof on 10/15,” Biegler explained.

The first tier of the new Crew Access Tower for the Boeing CST-100 Starliner is installed at Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on Sept 9, 2015 where United Launch Alliance  Atlas V rockets will lift Boeing Starliners into orbit.  Photo credit: NASA/Dmitrios Gerondidakis
The first tier of the new Crew Access Tower for the Boeing CST-100 Starliner is installed at Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida where United Launch Alliance Atlas V rockets will lift Boeing Starliners into orbit. Photo credit: NASA/Dmitrios Gerondidakis

The newly named ‘Starliner’ space taxi will launch atop a newly human-rated Atlas V booster as soon as mid-2017, say NASA, ULA and Boeing officials.

But before astronauts can even climb aboard Starliner atop the Atlas rocket, ULA and Boeing first had to design, build and install a brand new tower providing access to the capsule for the crews and technicians.

Pad 41 is currently a “clean pad” with no gantry and no walkway to ‘Starliner’ because the Atlas V has only been used for unmanned missions to date.

The CST-100 ‘Starliner’ is at the forefront of ushering in the new commercial era of space flight and will completely revolutionize how we access, explore and exploit space for the benefit of all mankind.

This is the first new Crew Access Tower to be built at the Cape in decades, going back to NASA’s heyday and the Apollo moon landing era.

The tier segments were assembled about four miles down the road at the Atlas Space Operations Center on Cape Canaveral – so as not to disrupt the chock full manifest of Atlas rockets launching on a breakneck schedule for the NASA, military and commercial customers who ultimately pay the bills to keep ULA afloat and launch groundbreaking science probes and the most critical national security payloads vital to national defense.

“Each segment was outfitted with additional steel work, as well as electrical, plumbing and the staircase. Then they will be transported 3.9 miles out to the pad, one at a time on a gold hoffer and then we start erecting.”

The first two tiers were just transported out to pad 41. Installation and stacking of one tier on top of another starts in a few days.

Artist’s concept of Boeing’s CST-100 space taxi atop a human rated ULA Atlas-V rocket showing new crew access tower and arm at Space Launch Complex 41, Cape Canaveral Air Force Station, Fl. Credit: ULA/Boeing
Artist’s concept of Boeing’s CST-100 space taxi atop a human rated ULA Atlas-V rocket showing new crew access tower and arm at Space Launch Complex 41, Cape Canaveral Air Force Station, Fl. Credit: ULA/Boeing

“We are very pleased with the progress so far,” Biegler told me. “Everything is on schedule and has gone remarkably well so far. No safety or workmanship issues. It’s all gone very well.”

“The first tier is obviously the most critical [and will take a bit longer than the others to insure that everything is being done correctly]. It has to be aligned precisely over the anchor bolts on the foundation at the pad. Then it gets bolted in place.”

“After that they can be installed every couple of days, maybe every three days or so. The pieces of the tower will go up quickly.”

Artist’s concept of Boeing’s CST-100 space taxi atop a human rated ULA Atlas-V rocket showing new crew access tower and arm. Credit: ULA/Boeing
Artist’s concept of Boeing’s CST-100 space taxi atop a human rated ULA Atlas-V rocket showing new crew access tower and arm. Credit: ULA/Boeing
The steel tiers and tower are being built by Hensel Phelps under contract to ULA.

“Construction by the Hensel Phelps team started in January 2015,” Biegler said.

Erecting the entire tower is the next step. After stacking the tiers is fully completed later this year then comes structure, testing and calibration work over the next year.

“After tower buildup comes extensive work to outfit the tower with over 400 pieces of outboard steel that have to be installed. That takes much longer,” Biegler said.

“Designed with modern data systems, communications and power networks integrated and protected from blast and vibration, plus an elevator, the Crew Access Tower has been built with several features only a fully suited astronaut could appreciate, such as wider walkways, snag-free railings and corners that are easy to navigate without running into someone,” according to NASA officials.

Just like the shuttle, “the tower will also be equipped with slide wire baskets for emergency evacuation to a staged blast-resistant vehicle.”

“At the very top is the area that protects the access arm and provides the exit location for the emergency egress system. It will all be stick built from steel out at the pad,” Biegler elaborated.

The access arm with the walkway that astronauts will traverse to the Starliner capsule is also under construction. It is about 180 feet above ground.

Astronauts will ride an elevator up the tower to the access arm, and walk through it to the white room at the end to board the Starliner capsule.

“The arm along with the white room and torque tube are being fabricated in Florida. It will all be delivered to the pad sometime around next June [2016],” Biegler stated.

“We built a test stand tower for the access arm at our Oak Hill facility to facilitate the installation process. We mount the arm and the hydraulic drive system and then run it through its paces prior to its delivery to the pad.”

“The access arm – including the torque tube out to the end – is just over 40 feet in length.”

“We will integrate it off line because we don’t have a lot of time to troubleshoot out at the pad. So we will hook up all its drive systems and electronics on the test structure stand.”

“Then we will spend about 3 months testing it and verifying that everything is right. We’ll use laser lining to know it all precisely where the arm is. So that when we bring it out to the pad we will know where it is to within fractions of an inch. Obviously there will be some minor adjustments up and down.”

“That way in the end we will know that everything in the arm and the hydraulic drive system are working within our design specs.”

When the arm is finally installed on the crew access tower it will be complete, with the white room and environmental seal already attached.

“It will stow under the crew access tower, which is located west and north of the launch vehicle. The arm will swing out about 120 degrees to the crew module to gain access and was strategically picked to best fit the features and foundation at the existing pad structure.”

Tower construction takes place in between Atlas launches and pauses in the days prior to launches. For example the construction team will stand down briefly just ahead of the next Atlas V launch currently slated for Oct. 2 with the Mexican governments Morelos-3 communications satellite.

MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com
The Crew Access Tower is now being erected at Pad 41 following MUOS-4 blastoff here. MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com

Starliners’ actual launch date totally depends on whether the US Congress provides full funding for NASA’s commercial crew program (CCP).

Thus far the Congress has totally failed at providing the requested CCP budget to adequately fund the program – already causing a 2 year delay of the first flight from 2015 to 2017.

Boeing is making great progress on manufacturing the first CST-100 Starliner.

Barely a week ago, Boeing staged the official ‘Grand Opening’ ceremony for the craft’s manufacturing facility held at the Kennedy Space Center on Friday, Sept 4. 2015 – attended by Universe Today as I reported here.

ULA has also already started assembly of the first two Atlas V rockets designated for Starliner at their rocket factory in Decatur, Alabama.

Read my earlier exclusive, in depth one-on-one interviews with Chris Ferguson – America’s last shuttle commander, who now leads Boeings’ CST-100 program; here and here.

First view of the Boeing CST-100 'Starliner' crewed space taxi at the Sept. 4, 2015 Grand Opening ceremony held in the totally refurbished C3PF manufacturing facility at NASA's Kennedy Space Center. These are the upper and lower segments of the first Starliner crew module known as the Structural Test Article (STA) being built at Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at KSC. Credit: Ken Kremer /kenkremer.com
First view of the Boeing CST-100 ‘Starliner’ crewed space taxi at the Sept. 4, 2015 Grand Opening ceremony held in the totally refurbished C3PF manufacturing facility at NASA’s Kennedy Space Center. These are the upper and lower segments of the first Starliner crew module known as the Structural Test Article (STA) being built at Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at KSC. Credit: Ken Kremer /kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

More Spectacular Images from the MUOS-4 Launch

Skywatchers across Central Florida got an unusual view early Wednesday morning in conjunction with the Atlas V launch of the MUOS-4 satellite.

“That wasn’t thunder this AM, Florida: An absolutely stunning MUOS launch!” tweeted photographer Michael Seeley, who shared several images of the launch with Universe Today. Mike is a freelance photographer and works with Spaceflight Insider. You can see more of his imagery at his website.

The pre-dawn light combined with unusual atmospheric conditions produced stunning views both during and well after the launch. The skyshow was visible across a wide area.

“Folks as far south as Miami and up to Jacksonville to the north saw it,” Universe Today’s David Dickinson said. “I even heard kids waiting for the school bus on our street crying out in surprise!”

You can read more about the launch and the mission in our article from Ken Kremer, but see a stunning gallery of images of the unusual cloud formations following the launch below:

A long exposure image of the light trail from the Atlas V launch of the MUOS-4 satellite, as seen from the ITL Causeway. Image used by permission. Credit and copyright: Mike Seeley.
A long exposure image of the light trail from the Atlas V launch of the MUOS-4 satellite, as seen from the ITL Causeway. Image used by permission. Credit and copyright: Michael Seeley.
A closeup view of the Atlas V MUOS-4 launch by United Launch Alliance. Image used by permission. Credit and copyright: Michael Seeley.
A closeup view of the Atlas V MUOS-4 launch by United Launch Alliance. Image used by permission. Credit and copyright: Michael Seeley.

Below are a group of images and video from UT’s David Dickinson, taken about 100 miles away from Cape Canaveral in Hudson, Florida:

The launch of the MUOS-4 satellite from Cape Canaveral, Florida on September 2, 2015 created an unusual noctilucent cloud display, visible even from 100 miles away. Credit and copyright: David Dickinson.
The launch of the MUOS-4 satellite from Cape Canaveral, Florida on September 2, 2015 created an unusual noctilucent cloud display, visible even from 100 miles away. Credit and copyright: David Dickinson.
Remaining noctilucent clouds about 25 minutes after the launch of the MUOS-4 satellite on board an Atlas V rocket on September 2, 2015. Image taken from Hudson, Florida, about 100 miles west of Cape Canaveral. Credit and copyright: David Dickinson.
Remaining noctilucent clouds about 25 minutes after the launch of the MUOS-4 satellite on board an Atlas V rocket on September 2, 2015. Image taken from Hudson, Florida, about 100 miles west of Cape Canaveral. Credit and copyright: David Dickinson.

A view from Hudson, Florida, about 100 miles west of Cape Canaveral after the launch of the MUOS-4 Satellite on September 2, 2015. Credit and copyright: David Dickinson.
A view from Hudson, Florida, about 100 miles west of Cape Canaveral after the launch of the MUOS-4 Satellite on September 2, 2015. Credit and copyright: David Dickinson.
An Atlas V rocket carrying the MUOS-4 mission lifts off from Space Launch Complex 41, creating a unique light display. Sept. 2, 2015. Credit: ULA.
An Atlas V rocket carrying the MUOS-4 mission lifts off from Space Launch Complex 41, creating a unique light display. Sept. 2, 2015. Credit: ULA.

Atlas V Launch of Navy’s Revolutionary MUOS-4 Tactical Comsat Produces Exotic Skyshow

ULA Atlas V rocket successfully launches MUOS-4 for the U.S. Navy on Sept. 2, 2015 from Cape Canaveral Air Force Station, Florida. Credit: ULA
See launch gallery below[/caption]

CAPE CANAVERAL AIR FORCE STATION, FL – Today’s (Sept. 2) stunningly successful launch of the US Navy’s revolutionary MUOS-4 tactical communications satellite atop a mighty Atlas V rocket produced an unexpectedly exotic skyshow beyond compare for lucky spectators all around the Florida Space Coast, as it thundered off a Cape Canaveral launch pad and simultaneously generated house and bone rattling vibrations.

Seasoned and long time launch enthusiasts have rarely if ever never seen anything like this morning’s spectacular predawn launch of the Mobile User Objective System-4 (MUOS-4) satellite for the US Navy at 6:18 a.m. EDT aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station, Florida.

As the rocket arced over eastwards above the Atlantic Ocean the huge vapor trail turned utterly exotic – producing a whitish oval glow that appeared out of nowhere, and looked to me like a moving and living creature as it moved downwards and forwards. Although the rocket appeared to head towards the Earth’s horizon it was actually being propelled to orbit by the most powerful variant of the Atlas V rocket.

Exotic vapor produced by launch of MUOS-4 communications satellite for the US Navy atop a United Launch Alliance Atlas V rocket from Space launch Complex-41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Dawn Leek Taylor/Space Head News
Exotic vapor trail produced by launch of MUOS-4 communications satellite for the US Navy atop a United Launch Alliance Atlas V rocket from Space launch Complex-41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Dawn Leek Taylor/Space Head News

The alien looking trail was fortuitously highlighted by glint from the sun that may have been enhanced by a slight delay of some 19 minutes from the originally planned launch time of 5:59 a.m. EDT as the launch team worked to resolve a technical issue.

Local residents in the Titusville, Fl, area and surroundings told me that their houses and windows shook this morning from the powerful roar and thunderous sound waves pulsing away from the Atlas V rocket. Sleeping children were awoken, close to school time anyway! And another gentleman said he felt it inside the shower with running water – having misunderstood the launch time!

The MUOS-4 launch by United Launch Alliance had also been postponed by 48 hours from Monday morning Aug. 31 due to threatening weather expected from Tropical Storm Erika which most likely would have obliterated today’s uniquely beautiful experience!

Blastoff of MUOS-4 US Navy communications satellite on United Launch Alliance Atlas V rocket from pad 41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Ken Kremer/kenkremer.com
Blastoff of MUOS-4 US Navy communications satellite on United Launch Alliance Atlas V rocket from pad 41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Ken Kremer/kenkremer.com

The Lockheed Martin-built MUOS-4 satellite was successfully orbited by the Atlas V and is already talking from space to the satellite control team at the Naval Spacecraft Operations Control facility in Naval Base Ventura County, Point Mugu, Calif.

MUOS-4 will enable near-global coverage for a new secure military communications network offering enhanced capabilities for mobile forces.

“Today’s successful launch will enable the MUOS constellation to reach global coverage,” said Jim Sponnick, ULA vice president, Atlas and Delta Programs.

“The Lockheed Martin-built MUOS-4 satellite will deliver voice, data, and video communications capability, similar to a cellular network, to our troops all over the globe.”

Weird exhaust trail from launch of MUOS-4 communications satellite for the US Navy atop a United Launch Alliance Atlas V rocket from Space launch Complex-41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015 by Titusville, FL  resident Ashley Crouch. Credit: Ashley Crouch
Weird exhaust trail from launch of MUOS-4 communications satellite for the US Navy atop a United Launch Alliance Atlas V rocket from Space launch Complex-41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015 by Titusville, FL resident Ashley Crouch. Credit: Ashley Crouch

MUOS is a next-generation narrowband tactical satellite communications system designed to significantly improve ground communications for U.S. forces on the move.

This is the fourth satellite in the MUOS series and will provide military users up to 16 times more communications capability over existing systems, including simultaneous voice, video and data, leveraging 3G mobile communications technology.

With MUOS-4 in orbit the system’s initial constellation is completed. It provides the MUOS network with near-global coverage. Communications coverage for military forces now extends further toward the North and South poles than ever before, according to Lockheed Martin officials.

Exotic vapor produced by launch of MUOS-4 communications satellite for the US Navy atop a United Launch Alliance Atlas V rocket from Space launch Complex-41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Ken Kremer/kenkremer.com
Exotic vapor trail produced by launch of MUOS-4 communications satellite for the US Navy atop a United Launch Alliance Atlas V rocket from Space launch Complex-41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Ken Kremer/kenkremer.com

The unmanned Atlas V expendable rocket launched in its mightiest configuration known as the Atlas V 551 with five solid rocket boosters augmenting the first stage.

The 206 foot-tall rocket features a 5-meter diameter payload fairing, five Aerojet Rocketdyne first stage strap on solid rocket motors and a single engine Centaur upper stage powered by the Aerojet Rocketdyne RL10C-1 engine.

The first stage is powered by the Russian-built dual nozzle RD AMROSS RD-180 engine. Combined with the five solid rocket motors, the Atlas V first stage generates over 2.5 million pounds of liftoff thrust.

The RD-180 burns RP-1 (Rocket Propellant-1 or highly purified kerosene) and liquid oxygen and delivers 860,200 lb of thrust at sea level.

And the rocket needed all that thrust because the huge MUOS-4 was among the heftiest payloads ever lofted by an Atlas V booster, weighing in at some 15,000 pounds.

MUOS-4, the next satellite scheduled to join the U.S. Navy’s Mobile User Objective System (MUOS) secure communications network, launched on Sept 2, 2015 from Cape Canaveral Air Force Station, Florida and is responding normally to ground control.  Credit: Lockheed Martin
MUOS-4, the next satellite scheduled to join the U.S. Navy’s Mobile User Objective System (MUOS) secure communications network, launched on Sept 2, 2015 from Cape Canaveral Air Force Station, Florida and is responding normally to ground control. Credit: Lockheed Martin

Ken is onsite for launch coverage from Cape Canaveral Air Force Station and the Kennedy Space Center.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about MUOS-4 US Navy launch, Orion, SLS, SpaceX, Boeing, ULA, Space Taxis, Mars rovers, Orbital ATK, Antares, NASA missions and more at Ken’s upcoming outreach events:

Sep 2/3: “MUOS-4 launch, Orion, Commercial crew, Curiosity explores Mars, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Weird exhaust trail from launch of MUOS-4 communications satellite for the US Navy atop a United Launch Alliance Atlas V rocket from Space launch Complex-41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015 by Titusville, FL  resident Ashley Crouch. Credit: Ashley Crouch
Weird exhaust trail from launch of MUOS-4 communications satellite for the US Navy atop a United Launch Alliance Atlas V rocket from Space launch Complex-41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015 by Titusville, FL resident Ashley Crouch. Credit: Ashley Crouch
Liftoff of MUOS-4 comsat for US Navy on a United Launch Alliance Atlas V rocket from Space launch Complex-41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Julian Leek/Space Head News
Liftoff of MUOS-4 comsat for US Navy on a United Launch Alliance Atlas V rocket from Space launch Complex-41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Julian Leek/Space Head News
MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com
MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com

Tropical Storm Erika Delayed Blastoff for US Navy set for Sept. 2 on Most Powerful Atlas V Rocket: Watch Live

CAPE CANAVERAL AIR FORCE STATION, FL – Blastoff of an advanced communications satellite for the US Navy is set for early Wednesday morning, Sept. 2, using the most powerful variant of the United Launch Alliance (ULA) Atlas V rocket – following a 48 hour postponement due to terrible weather expected from Tropical Storm Erika, which pounded islands in the Caribbean causing destruction and over 20 deaths.

The threat of strong winds and heavy rains forced Florida Gov. Rick Scott to declare a state of emergency in every county in Florida last Friday that was still in effect as rains doused central Florida on Monday.

ULA decided against rolling the Atlas V rocket out to the seaside pad on Saturday in support of the then planned launch of the Multi-User Objective System satellite on Aug. 31.

Liftoff of the Multi-User Objective System-4 (MUOS-4) satellite for the US Navy is now slated for 5:59 a.m. EDT from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida, and will be broadcast live.

The launch window extends for 44 minutes from 5:59-6:43 a.m. EDT and the weather outlook is now promising.

US Air Force weather forecasters currently predict a 70% chance of favorable weather conditions for “GO” at launch time on Wednesday morning.

The primary concern is for cumulus clouds.

The unmanned Atlas V expendable rocket will launch in its mightiest configuration known as the Atlas V 551 with five solid rocket boosters augmenting the first stage.
Therefore the predawn liftoff is expected to be absolutely spectacular, resonating with a thunderous roar rising on a huge smoke trail that will light up the darkened skies all around the Florida Space Coast for spectators here and far beyond.

You can watch the launch on your laptop or smart phone since it will be carried live on a ULA webcast: http://www.ulalaunch.com

The ULA webcast starts about 20 minutes before launch.

The launch time moves up 4 minutes in the event of a 24 hour delay. The weather prognosis stands at 70 percent “GO”.

MUOS-4 US Navy communications satellite stowed inside huge 5 meter diameter payload fairing atop Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL set for launch on Sept. 2, 2015. EDT. Credit: Ken Kremer/kenkremer.com
MUOS-4 US Navy communications satellite stowed inside huge 5 meter diameter payload fairing atop Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL set for launch on Sept. 2, 2015. EDT. Credit: Ken Kremer/kenkremer.com

MUOS is a next-generation narrowband tactical satellite communications system designed to significantly improve ground communications for U.S. forces on the move.

This is the fourth and last satellite in the MUOS series and will provide military users 10 times more communications capability over existing systems, including simultaneous voice, video and data, leveraging 3G mobile communications technology.

MUOS-4 satellite artwork.  Credit: US Navy/ULA
MUOS-4 satellite artwork. Credit: US Navy/ULA

MUOS-3 launched earlier this year.

The launch countdown will begin at 11:09 p.m. EDT on Tuesday night, Sept. 1, followed by fueling of the Atlas V rocket.

Ken is onsite for launch coverage from Cape Canaveral Air Force Station and the Kennedy Space Center.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

United Launch Alliance Atlas V rocket with MUOS-4 US Navy communications satellite poised at pad 41 at Cape Canaveral Air Force Station, FL, set for launch on Sept. 2, 2015. EDT. View from atop NASA’s SLS mobile launcher at the Kenned Space Center. Credit: Ken Kremer/kenkremer.com
United Launch Alliance Atlas V rocket with MUOS-4 US Navy communications satellite poised at pad 41 at Cape Canaveral Air Force Station, FL, set for launch on Sept. 2, 2015. EDT. View from atop NASA’s SLS mobile launcher at the Kenned Space Center. Credit: Ken Kremer/kenkremer.com

………….

Learn more about MUOS-4 US Navy launch, Orion, SLS, SpaceX, Boeing, ULA, Space Taxis, Mars rovers, Orbital ATK, Antares, NASA missions and more at Ken’s upcoming outreach events:

Sep 1 – Sep 2: “MUOS-4 launch, Orion, Commercial crew, Curiosity explores Mars, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings