If There is a Multiverse, Can There be Life There Too?

The Multiverse Theory, which states that there may be multiple or even an infinite number of Universes, is a time-honored concept in cosmology and theoretical physics. While the term goes back to the late 19th century, the scientific basis of this theory arose from quantum physics and the study of cosmological forces like black holes, singularities, and problems arising out of the Big Bang Theory.

One of the most burning questions when it comes to this theory is whether or not life could exist in multiple Universes. If indeed the laws of physics change from one Universe to the next, what could this mean for life itself? According to a new series of studies by a team of international researchers, it is possible that life could be common throughout the Multiverse (if it actually exists).

The studies, titled “The impact of dark energy on galaxy formation. What does the future of our Universe hold?” and “Galaxy formation efficiency and the multiverse explanation of the cosmological constant with EAGLE simulations“, recently appeared in the Monthly Notices of the Royal Astronomical Society. The former study was led by Jaime Salcido, a postgraduate student at Durham University’s Institute for Computational Cosmology.

Einstein Lecturing
Albert Einstein during a lecture in Vienna in 1921. Credit: National Library of Austria/F. Schmutzer/Public Domain

The latter was led by Luke Barnes, a John Templeton Research Fellow at the University of Sydney’s Sydney Institute for Astronomy. Both teams included members from the University of Western Australia’s International Center for Radio Astronomy Research, the Liverpool John Moores University’s Astrophysics Research Institute, and Leiden University’s Leiden Observatory.

Together, the research team sought to determine how the accelerated expansion of the cosmos could have effected the rate of star and galaxy formation in our Universe. This accelerate rate of expansion, which is an integral part of the Lambda-Cold Dark Matter (Lambda-CDM) model of cosmology, arose out of problems posed by Einstein’s Theory of General Relativity.

As a consequence of Einstein’s field equations, physicist’s understood that the Universe would either be in a state of expansion or contraction since the Big Bang. In 1919, Einstein responded by proposing the “Cosmological Constant” (represented by Lambda), which was a force that “held back” the effects of gravity and thus ensured that the Universe was static and unchanging.

Shortly thereafter, Einstein retracted this proposal when Edwin Hubble revealed (based on redshift measurements of other galaxies) that the Universe was indeed in a state of expansion. Einstein apparently went as far as to declare the Cosmological Constant “the biggest blunder” of his career as a result. However, research into cosmological expansion during the late 1990s caused his theory to be reevaluated.

Artist’s impression of the Lambda Cold Dark Matter (LCDM) cosmological model of the Universe. Credit: Wikipedia Commons/Alex Mittelmann, Coldcreation

In short, ongoing studies of the large-scale Universe revealed that during the past 5 billion years, cosmic expansion has accelerated. As such, astronomers began to hypothesize the existence of a mysterious, invisible force that was driving this acceleration. Popularly known as “Dark Energy”, this force is also referred to as the Cosmological Constant (CC) since it is responsible for counter-effecting the effects of gravity.

Since that time, astrophysicists and cosmologists have sought to understand how Dark Energy could have effected cosmic evolution. This is an issue since our current cosmological models predict that there must be more Dark Energy in our Universe than has been observed. However, accounting for larger amounts of Dark Energy would cause such a rapid expansion that it would dilute matter before any stars, planets or life could form.

For the first study, Salcido and the team therefore sought to determine how the presence of more Dark Energy could effect the rate of star formation in our Universe. To do this, they conducted hydrodynamical simulations using the EAGLE (Evolution and Assembly of GaLaxies and their Environments) project – one of the most realistic simulations of the observed Universe.

Using these simulations, the team considered the effects that Dark Energy (at its observed value) would have on star formation over the past 13.8 billion years, and an additional 13.8 billion years into the future. From this, the team developed a simple analytic model that indicated that Dark Energy – despite the difference in the rate of cosmic expansion – would have a negligible impact on star formation in the Universe.

Timeline of the Big Bang and the expansion of the Universe. Credit: NASA

They further showed that the impact of Lambda only becomes significant when the Universe has already produced most of its stellar mass and only causes decreases in the total density of star formation by about 15%. As Salcido explained in a Durham University press release:

“For many physicists, the unexplained but seemingly special amount of dark energy in our Universe is a frustrating puzzle. Our simulations show that even if there was much more dark energy or even very little in the Universe then it would only have a minimal effect on star and planet formation, raising the prospect that life could exist throughout the Multiverse.”

For the second study, the team used the same simulation from the EAGLE collaboration to investigate the effect of varying degrees of the CC on the formation on galaxies and stars. This consisted of simulating Universes that had Lambda values ranging from 0 to 300 times the current value observed in our Universe.

However, since the Universe’s rate of star formation peaked at around 3.5 billion years before the onset of accelerating expansion (ca. 8.5 billion years ago and 5.3 billion years after the Big Bang), increases in the CC had only a small effect on the rate of star formation.

 

Taken together, these simulations indicated that in a Multiverse, where the laws of physics may differ widely, the effects of more dark energy cosmic accelerated expansion would not have a significant impact on the rates of star or galaxy formation. This, in turn, indicates that other Universes in the Multiverse would be just about as habitable as our own, at least in theory. As Dr. Barnes explained:

“The Multiverse was previously thought to explain the observed value of dark energy as a lottery – we have a lucky ticket and live in the Universe that forms beautiful galaxies which permit life as we know it. Our work shows that our ticket seems a little too lucky, so to speak. It’s more special than it needs to be for life. This is a problem for the Multiverse; a puzzle remains.”

However, the team’s studies also cast doubt on the ability of Multiverse Theory to explain the observed value of Dark Energy in our Universe. According to their research, if we do live in a Multiverse, we would be observing as much as 50 times more Dark Energy than what we are. Although their results do not rule out the possibility of the Multiverse, the tiny amount of Dark Energy we’ve observed would be better explained by the presence of a as-yet undiscovered law of nature.

As Professor Richard Bower, a member of Durham University’s Institute for Computational Cosmology and a co-author on the paper, explained:

“The formation of stars in a universe is a battle between the attraction of gravity, and the repulsion of dark energy. We have found in our simulations that Universes with much more dark energy than ours can happily form stars. So why such a paltry amount of dark energy in our Universe? I think we should be looking for a new law of physics to explain this strange property of our Universe, and the Multiverse theory does little to rescue physicists’ discomfort.”

These studies are timely since they come on the heels of Stephen Hawking’s final theory, which cast doubt on the existence of the Multiverse and proposed a finite and reasonably smooth Universe instead. Basically, all three studies indicate that the debate about whether or not we live in a Multiverse and the role of Dark Energy in cosmic evolution is far from over. But we can look forward to next-generation missions providing some helpful clues in the future.

These include the James Webb Space Telescope (JWST), the Wide Field Infrared Survey Telescope (WFIRST), and ground-based observatories like the Square Kilometer Array (SKA). In addition to studying exoplanets and objects in our Solar System, these mission will be dedicated to studying how the first stars and galaxies formed and determining the role played by Dark Energy.

What’s more, all of these missions are expected to be gathering their first light sometime in the 2020s. So stay tuned, because more information – with cosmological implications – will be arriving in just a few years time!

Further Reading: Durham University

Here’s Stephen Hawking’s Final Theory About the Big Bang

Stephen Hawking is rightly seen as one of the most influential scientists of our time. In his time on this planet, the famed physicist, science communicator, author and luminary became a household name, synonymous with the likes of Einstein, Newton and Galileo. What is even more impressive is the fact that he managed to maintain his commitment to science, education and humanitarian efforts despite suffering from a slow, degenerative disease.

Even though Hawking recently passed away, his influence is still being felt. Shortly before his death, Hawking submitted a paper offering his final theory on the origins of the Universe. The paper, which was published earlier this week (on Wednesday, May 2nd), offers a new take on the Big Bang Theory that could revolutionize the way we think of the Universe, how it was created, and how it evolved.

The paper, titled “A smooth exit from eternal inflation?“, was published in the Journal of High Energy Physics. The theory was first announced at a conference at the University of Cambridge in July of last year, where Professor Thomas Hertog (a Belgian physicist at KU Leuven University) shared Hawking’s paper (which Hertog co-authored) on the occasion of his 75th birthday.

Stephen Hawking’s final theory on the Big Bang, submitted shortly before he passed away, was recently published. Credit: University of Cambridge

According to the current scientific consensus, all of the current and past matter in the Universe came into existence at the same time – roughly 13.8 billion years ago. At this time, all matter was compacted into a very small ball with infinite density and intense heat. Suddenly, this ball started to inflate at an exponential rate, and the Universe as we know it began.

However, it is widely believed that since this inflation started, quantum effects will keep it going forever in some regions of the Universe. This means that globally, the Universe’s inflation is eternal. In this respect, the observable part of our Universe (measuring 13.8 billion light-years in any direction) is just a region in which inflation has ended and stars and galaxies formed.

As Hawking explained in an interview with Cambridge University last autumn:

“The usual theory of eternal inflation predicts that globally our universe is like an infinite fractal, with a mosaic of different pocket universes, separated by an inflating ocean. The local laws of physics and chemistry can differ from one pocket universe to another, which together would form a multiverse. But I have never been a fan of the multiverse. If the scale of different universes in the multiverse is large or infinite the theory can’t be tested. ”

In their new paper, Hawking and Hertog offer a new theory that predicts that the Universe is not an infinite fractal-like multiverse, but is finite and reasonably smooth. In short, they theorize that the eternal inflation, as part of the theory of the Big Bang, is wrong. As Hertog explained:

“The problem with the usual account of eternal inflation is that it assumes an existing background universe that evolves according to Einstein’s theory of general relativity and treats the quantum effects as small fluctuations around this. However, the dynamics of eternal inflation wipes out the separation between classical and quantum physics. As a consequence, Einstein’s theory breaks down in eternal inflation.”

In contrast to this, Hawking and Hertog offer an explanation based on String Theory, a branch of theoretical physics that attempts to unify General Relativity with quantum physics. This theory was proposed to explain how gravity interacts with the three other fundamental forces of the Universe (weak and strong nuclear forces and electromagnetism), thus producing a Theory of Everything (ToE).

To put it simply, this theory describes the fundamental constituents of the Universe as tiny, one-dimensional vibrating strings. Hawking and Hertog’s approach uses the holography concept of string theory, which postulates that the Universe is a large and complex hologram. In this theory, physical reality in certain 3D spaces can be mathematically reduced to 2D projections on a surface.

 

This illustration shows the evolution of the Universe, from the Big Bang on the left, to modern times on the right. Image: NASA

Together, Hawking and Hertog developed a variation of this concept to project out the dimension of time in eternal inflation. This enabled them to describe eternal inflation without having to rely on General Relativity, thus reducing inflation to a timeless state defined on a spatial surface at the beginning of time. In this respect, the new theory represents a change from Hawking’s earlier work on “no boundary theory”.

Also known as the Hartle and Hawking No Bounary Proposal, this theory viewed the Universe like a quantum particle – assigning it a wave function that described all possible Universes. This theory also predicted that if you go back in time to the beginning of the Universe, it would shrink and close off like a sphere. Lastly, it predicted that the Universe would eventually stop expanding and collapse in on itself.

As Hertog explains, this new theory is a departure from that earlier work:

“When we trace the evolution of our universe backwards in time, at some point we arrive at the threshold of eternal inflation, where our familiar notion of time ceases to have any meaning. Now we’re saying that there is a boundary in our past.”

Using this theory, Hawking and Hertog were able to derive more reliable predictions about the global structure of the Universe. In addition, a Universe predicted to emerge from eternal inflation on the past boundary is also finite and much simpler. Last, but not least, the theory is more predictive and testable than the infinite Multiverse predicted by the old theory of eternal inflation.

 

In February 2016, LIGO detected gravity waves for the first time. As this artist's illustration depicts, the gravitational waves were created by merging black holes. The third detection just announced was also created when two black holes merged. Credit: LIGO/A. Simonnet.
Artist’s impression of merging binary black holes. Credit: LIGO/A. Simonnet.

“We are not down to a single, unique universe, but our findings imply a significant reduction of the multiverse, to a much smaller range of possible universes,” said Hawking. In theory, a finite and smooth Universe is one we can observe (at least locally) and will be governed by physical laws that we are already familiar with. Compared to an infinite number of Universes governed by different physical laws, it certainly simplifies the math!

Looking ahead, Hertog plans to study the implications of this theory on smaller scales using data obtained by space telescopes about the local Universe. In addition, he hopes to take advantage of recent studies concerning gravitational waves (GWs) and the many events that have been detected. Essentially, Hertog believes that primordial GWs generated at the exit from eternal inflation are the most promising means to test the model.

Due to the expansion of our Universe since the Big Bang, these GWs would have very long wavelengths,  ones which are outside the normal range of the Laser Interferometry Gravitational-Wave Observatory‘s (LIGO) or Virgo‘s detectors. However, the Laser Interferometry Space Antenna (LISA) – an ESA-led plan for a space-based gravitational wave observatory – and other future experiments may be capable of measuring them.

Even though he is longer with us, Hawking’s final theory could be his profound contribution to science. If future research should prove him correct, then Hawking will have resolved one of the most daunting problems in modern astrophysics and cosmology. Just one more achievement from a man who spent his life changing how people think about the Universe!

Further Reading: University of Cambridge

Is Another Universe Sitting Too Close To Us On The Multiverse Bus?

Since the 1960s, astronomers have been aware of the electromagnetic background radiation that pervades the Universe. Known as the Cosmic Microwave Background, this radiation is the oldest light in the Universe and what is left over from the Big Bang. By 2004, astronomers also became aware that a large region within the CMB appeared to be colder than its surroundings.

Known as the “CMB Cold Spot”, scientists have puzzled over this anomaly for years, with explanations ranging from a data artifact to it being caused by a supervoid. According to a new study conducted by a team of scientists from Durham University, the presence of a supervoid has been ruled out. This conclusion once again opens the door to more exotic explanations – like the existence of a parallel Universe!

The Cold Spot is one of several anomalies that astronomers have been studying since the first maps of CMB were  created using data from the Wilkinson Microwave Anisotropy Probe (WMAP). These anomalies are regions in the CMB that fall beneath the average background temperature of 2.73 degrees above absolute zero (-270.43 °C; -460.17 °F). In the case of the Cold Spot, the area is just 0.00015° colder than its surroundings.

Map of the cosmic microwave background (CMB) sky produced by the Planck satellite. The Cold Spot is shown in the inset, with coordinates and the temperature difference in the scale at the bottom. Credit: ESA/Durham University.

And yet, this temperature difference is enough that the Cold Spot has become something of a thorn in the hip of standard models of cosmology. Previously, the smart money appeared to be on it being caused by a supervoid – and area of space measuring billions of light years across which contained few galaxies. To test this theory, the Durham team conducted a survey of the galaxies in the region.

This technique, which measures the extent to which visible light coming from an object is shifted towards the red end of the spectrum, has been the standard method for determining the distance to other galaxies for over a century. For the sake of their study, the Durham team relied on data from the Anglo-Australian Telescope to conduct a survey where they measured the redshifts of 7,000 nearby galaxies.

Based on this high-fidelity dataset, the researchers found no evidence that the Cold Spot corresponded to a relative lack of galaxies. In other words, there was no indication that the region is a supervoid. The results of their study will be published in the Monthly Notices of the Royal Astronomical Society (MNRAS) under the title “Evidence Against a Supervoid Causing the CMB Cold Spot“.

As Ruari Mackenzie – a postdoctoral student in the Dept. of Physics at Durham University, a member of the Center for Extragalactic Astronomy, and the lead author on the paper – explained in an RAS press release:

“The voids we have detected cannot explain the Cold Spot under standard cosmology. There is the possibility that some non-standard model could be proposed to link the two in the future but our data place powerful constraints on any attempt to do that.”

The 3-D galaxy distribution in the foreground of the CMB Cold Spot, where each point is a galaxy. Credit: Durham University.

Specifically, the Durham team found that the Cold Spot region could be split into smaller voids, each of which were surrounded by clusters of galaxies. This distribution was consistent with a control field the survey chose for the study, both of which exhibited the same “soap bubble” structure. The question therefore arises: if the Cold Spot is not the result of a void or a relative lack of galaxies, what is causing it?

This is where the more exotic explanations come in, which emphasize that the Cold Spot may be due to something that exists outside the standard model of cosmology. As Tom Shanks, a Professor with the Dept.of Physics at Durham and a co-author of the study, explained:

“Perhaps the most exciting of these is that the Cold Spot was caused by a collision between our universe and another bubble Universe. If further, more detailed, analysis of CMB data proves this to be the case then the Cold Spot might be taken as the first evidence for the multiverse – and billions of other Universes may exist like our own.”

Multiverse Theory, which was first proposed by philosopher and psychologist William James, states that there may be multiple or an even infinite number of Universes that exist parallel to our own. Between these Universes exists the entirety of existence and all cosmological phenomena – i.e. space, time, matter, energy, and all of the physical laws that bind them.

Whereas it is often treated as a philosophical concept, the theory arose in part from the study of cosmological forces, like black holes and problems arising from the Big Bang Theory. In addition, variations on multiverse theory have been suggested as potential resolutions to theories that go beyond the Standard Model of particle physics – such as String Theory and M-theory.

Another variation – the Many-Worlds interpretation – has also been offered as a possible resolution for the wavefunction of subatomic particles. Essentially, it states that all possible outcomes in quantum mechanics exist in alternate universes, and there really is no such thing as “wavefunction collapse’.  Could it therefore be argued that an alternate or parallel Universe is too close to our own, and thus responsible for the anomalies we see in the CMB?

As explanations go, it certainly is exciting, if perhaps a bit fantastic? And the Durham team is not prepared to rule out that the Cold Spot could be the result fluctuations that can be explained by the standard model of cosmology. Right now, the only thing that can be said definitively is that the Cold Spot cannot be explained by something as straightforward as a supervoid and the absence of galaxies.

And in the meantime, additional surveys and experiments need to be conducted. Otherwise, this mystery may become a real sticking point for cosmology!

Further Reading: Royal Astronomical Society, arXiv

What is the Multiverse Theory?

Multiverse Theory

If you’re a fan of science fiction or fantasy then chances are, at some point, you’ve read a book, seen a movie, or watched a series that explored the concept of multiple universes. The idea being that within this thing we call time and space, there are other dimensions where reality differs from our own, sometimes slightly, sometimes radically. Interestingly enough, this idea is not restricted to fiction and fantasy.

In science, this is known as the Multiverse Theory, which states that there may be multiple or even an infinite number of universes (including the universe we consistently experience) that together comprise everything that exists: the entirety of space, time, matter, and energy as well as the physical laws and constants that describe them. In this context, multiple universes are often referred to as parallel universes because they exist alongside our own.

The term was coined in 1895 by the American philosopher and psychologist William James. However, the scientific basis of it arose from the study of cosmological forces like black holes and problems arising out of the Big Bang theory. For example, within black holes it is believed that a singularity exists – a point at which all physical laws cease – and where it becomes impossible to predict physical behavior.

Beyond this point, it is possible that there may be an entirely new set of physical laws, or just slightly different versions of the ones that we know, and that a different universe might exist. Theories like cosmic inflation support this idea, stating that countless universes emerged from the same primordial vacuum after the Big Bang, and that the universe as we know it is just what is observable to us.

Max Tegmark’s taxonomy of universes sums up the different theories on multiple universes. IN this model, there are four levels that classify all major schools on thought on the subject.

In Level One, different universes are arranged one on top of the other in what is called Hubble Volumes, all having the same physical laws and constants. Though each will likely differ from our own in terms of distribution of matter, there will eventually be Hubble volumes with similar, and even identical, configurations to our own.

In Level Two, universes with different physical constants exist and the multiverse as a whole is stretching and will continue to do so forever, but some regions of space stop stretching and form distinct bubbles, like gas pockets in a loaf of rising bread.

In Level Three, known as the Many Worlds Interpretation of Quantum Mechanics, observations cannot be predicted absolutely but a range of possible observations exist, each one corresponding to a different universe. Level Four, aka.the Ultimate Ensemble devised by Tegmark himself, considers as equally real all universes that can be defined by mathematical structures. In other words, universes with the same or different constants may exist.

We have written many articles about multiverse for Universe Today. Here’s an article about searching life in the multiverse, and here’s an article about parallel universe.

If you’d like more info on the Multiverse, check out some Recent Innovations about the Concept of Universe, and here’s a link to an article about the Size of the Universe.

We’ve also recorded an entire episode of Astronomy Cast all about Multiverses. Listen here, Episode 166: Multiverses.

Sources:
http://en.wikipedia.org/wiki/Multiverse
http://www.sciencedaily.com/releases/2010/01/100112165249.htm
http://www.astronomy.pomona.edu/Projects/moderncosmo/Sean%27s%20mutliverse.html
http://en.wikipedia.org/wiki/William_James
http://en.wikipedia.org/wiki/Big_Bang
http://en.wikipedia.org/wiki/Inflation_%28cosmology%29