5,000 Exoplanets!

An artist's illustration of NASA's TESS with Earth and the Moon. Image Credit: NASA

Before NASA’s TESS (Transiting Exoplanet Survey Satellite) mission launched in 2018, astronomers tried to understand what it would find in advance. One study calculated that TESS would find between 4430 and 4660 new exoplanets during its primary two-year-long mission.

The primary mission (PM) is over, and TESS is in its extended mission (EM) now. The extended mission is 1.5 years old, and TESS has discovered 176 confirmed exoplanets and 5164 candidates. Scientists are still going through data from the primary mission, so the data might be hiding many more exoplanets. And TESS isn’t finished yet.

Continue reading “5,000 Exoplanets!”

The Surface of the Moon is Electrically Charged, Which Could Allow a Hovering Robot to Explore it

Let’s not sugarcoat it. Exploring the Moon is not for the faint of heart! It’s an airless body, which means there is no atmosphere, the surface temperatures are extreme, and there’s lots of radiation. The low gravity also means you can never really walk on the surface and have to bounce around in a bulky spacesuit until you fall over. And you can bet your bottom dollar people will make a supercut of the footage someday (see below). Then there’s that awful moondust (aka. lunar regolith), which is electrostatically charged and sticks to EVERYTHING!

Looking to take advantage of this, researchers from the Massachusetts Institute of Technology (MIT) began testing a new concept for a hovering rover that harnesses the Moon’s natural charge to levitate across the surface. On the Moon, this surface charge is strong enough to levitate moon dust more than 1 meter (3.3 ft) above the surface. With support from NASA, this research could lead to a new type of robotic exploration vehicle that will help astronauts explore the Moon in the coming years.

Continue reading “The Surface of the Moon is Electrically Charged, Which Could Allow a Hovering Robot to Explore it”

Life Could Make Habitable Pockets in Venus’ Atmosphere

Credit: NASA/JPL-Caltech

The tantalizing possibility that life exists in the clouds of Venus is once again causing a stir amongst planetary scientists this week. Researchers out of the Massachusetts Institute of Technology, Cardiff University, and the University of Cambridge have proposed that some longstanding ‘anomalies’ in the composition of Venus’ atmosphere might be explained by the presence of ammonia. But ammonia itself would be a strange compound to discover there, unless some unknown process – such as biological life – was actively producing it. Perhaps more intriguingly, ammonia can remove the acidity from Venus’ hostile cloud-tops, suggesting that an airborne, ammonia-producing microbe might have evolved the ability to turn its hostile surroundings into something habitable.

Continue reading “Life Could Make Habitable Pockets in Venus’ Atmosphere”

When Did Photosynthesis Begin?

Sometime around 2.4 billion years ago, a nascent planet Earth underwent one of the most dramatic changes in its history. Known as the Great Oxidation Event, this period saw Earth’s atmosphere suddenly bloom with (previously scarce) molecular oxygen. The rapid alteration of the atmosphere’s composition was nothing short of a cataclysm for some early lifeforms (at the time, mostly simple celled prokaryotes). Anaerobic species – those that dwell in oxygen-free environments – experienced a near extinction-level event. But the Great Oxidation was also an opportunity for other forms of life to thrive. Oxygen in the atmosphere tempered the planetary greenhouse effect, turning methane into the less potent carbon dioxide, and ushering in a series of ice ages known as the Huronian Glaciation. But oxygen is an energy-rich molecule, and it also bolstered diversity and activity on the planet, as a powerful new source of fuel for living organisms.

The cause of this dramatic event? The tiniest of creatures: little ocean-dwelling cyanobacteria (sometimes known as blue-green algae) that had developed a new super-power never before seen on planet Earth: photosynthesis. This unique ability – to gain energy from sunlight and release oxygen as a waste product – was a revolutionary step for so small a critter. It quite literally changed the world.

Continue reading “When Did Photosynthesis Begin?”

Researchers Create the Most Powerful Magnet Ever Made on Earth: 20 Teslas

On September 5, 2021, a team of MIT researchers successfully tested a high-temperature superconducting magnet, breaking the world record for the most powerful magnetic field strength ever produced. Reaching 20 Teslas (a measure of field intensity), this magnet could prove to be the key to unlocking nuclear fusion, and providing clean, carbon-free energy to the world.

Continue reading “Researchers Create the Most Powerful Magnet Ever Made on Earth: 20 Teslas”

CHIME Detected Over 500 Fast Radio Burst in its First Year, Providing new Clues to What’s Causing Them

CHIME consists of four metal "half-pipes", each one 100 meters long. Image Credit: CHIME/Andre Renard, Dunlap Institute.
CHIME consists of four metal "half-pipes", each one 100 meters long. Image Credit: CHIME/Andre Renard, Dunlap Institute.

Much like Dark Matter and Dark Energy, Fast Radio Burst (FRBs) are one of those crazy cosmic phenomena that continue to mystify astronomers. These incredibly bright flashes register only in the radio band of the electromagnetic spectrum, occur suddenly, and last only a few milliseconds before vanishing without a trace. As a result, observing them with a radio telescope is rather challenging and requires extremely precise timing.

Hence why the Dominion Radio Astrophysical Observatory (DRAO) in British Columbia launched the Canadian Hydrogen Intensity Mapping Experiment (CHIME) in 2017. Along with their partners at the National Radio Astronomy Observatory (NRAO), the Massachusetts Institute of Technology (MIT), the Perimeter Institute, and multiple universities, CHIME detected more than 500 FRBs in its first year of operation (and more than 1000 since it commenced operations)!

Continue reading “CHIME Detected Over 500 Fast Radio Burst in its First Year, Providing new Clues to What’s Causing Them”

If Astronomers see Isoprene in the Atmosphere of an Alien World, There’s a Good Chance There’s Life There

Artists’s impression of the rocky super-Earth HD 85512 b. Credit: ESO/M. Kornmesser

It is no exaggeration to say that the study of extrasolar planets has exploded in recent decades. To date, 4,375 exoplanets have been confirmed in 3,247 systems, with another 5,856 candidates awaiting confirmation. In recent years, exoplanet studies have started to transition from the process of discovery to one of characterization. This process is expected to accelerate once next-generation telescopes become operational.

As a result, astrobiologists are working to create comprehensive lists of potential “biosignatures,” which refers to chemical compounds and processes that are associated with life (oxygen, carbon dioxide, water, etc.) But according to new research by a team from the Massachusetts Institute of Technology (MIT), another potential biosignature we should be on the lookout for is a hydrocarbon called isoprene (C5H8).

Continue reading “If Astronomers see Isoprene in the Atmosphere of an Alien World, There’s a Good Chance There’s Life There”

New Images of the “Golf Ball” Asteroid Pallas

New images of Pallas reveal a "golf ball asteroid" landscape. Credit: MIT/Marsset et al.

In 1802, German astronomer Heinrich Olbers observed what he thought was a planet within the Main Asteroid Belt. In time, astronomers would come to name this body Pallas, an alternate name for the Greek warrior goddess Athena. The subsequent discovery of many more asteroids in the Main Belt would lead to Pallas being reclassified as a large asteroid, the third-largest in the Belt after Ceres and Vesta.

For centuries, astronomers have sought to get a better look at Pallas to learn more about its size, shape, and composition. As of the turn of the century, astronomers had come to conclude that it was an oblate spheroid (an elongated sphere). Thanks to a new study by an international team, the first detailed images of Pallas have finally been taken, which reveal that its shape is more akin to a “golf ball” – i.e. heavily dimpled.

Continue reading “New Images of the “Golf Ball” Asteroid Pallas”

Here’s a Deepfake of Nixon Giving a Eulogy for the Apollo 11 Astronauts if Their Mission Failed

A screenshot from the Deep Fake video of Nixon reading his Apollo 11 bad news speech. Image Credit: In Event of Moon Disaster Project

It’s July 16th, 1969. The Apollo 11 crew have completed their training, and they’re in the Columbia Command Module atop a Saturn V rocket, to this day the most powerful rocket ever built. At 9:32 EDT the rocket lifts off, delivering the crew into Earth orbit 12 minutes after launch.

Continue reading “Here’s a Deepfake of Nixon Giving a Eulogy for the Apollo 11 Astronauts if Their Mission Failed”

An Army of Tiny Robots Could Assemble Huge Structures in Space

Two prototype assembler robots at work putting together a series of small units, known as voxels, into a larger structure. Credit: MIT/CBA/Benjamin Jenett

We live in a world where multiple technological revolutions are taking place at the same time. While the leaps that are taking place in the fields of computing, robotics, and biotechnology are gaining a great deal of attention, less attention is being given to a field that is just as promising. This would be the field of manufacturing, where technologies like 3D printing and autonomous robots are proving to be a huge game-changer.

For example, there is the work being pursued by MIT’s Center for Bits and Atoms (CBA). It is here that graduate student Benjamin Jenett and Professor Neil Gershenfeld (as part of Jenett’s doctoral thesis work) are working on tiny robots that are capable of assembling entire structures. This work could have implications for everything from aircraft and buildings to settlements in space.

Continue reading “An Army of Tiny Robots Could Assemble Huge Structures in Space”