Webb Blocks the Star to See a Debris Disk Around Beta Pictoris

This image from Webb’s MIRI (Mid-Infrared Instrument) shows the star system Beta Pictoris. An edge-on disc of dusty debris generated by collisions between planetesimals (orange) dominates the view. A hotter, secondary disc (cyan) is inclined by about 5 degrees relative to the primary disc. The curved feature at upper right, which the science team nicknamed the “cat’s tail,” has never been seen before. A coronagraph (black circle and bar) has been used to block the light of the central star, whose location is marked with a white star shape. In this image light at 15.5 microns is coloured cyan and 23 microns is orange (filters F1550C and F2300C, respectively). [Image description: A wide, thin horizontal orange line appears at the centre, extending almost to the edges, a debris disc seen edge-on. A thin blue-green disc is inclined about five degrees counterclockwise relative to the main orange disc. Cloudy, translucent grey material is most prominent near the orange main debris disc. Some of the grey material forms a curved feature in the upper right, resembling a cat’s tail. At the centre is a black circle with a bar. The central star, represented as a small white star icon, is blocked by an instrument known as a coronagraph. The background of space is black.]

You think you know someone, then you see them in a slightly different way and BAM, they surprise you. I’m not talking about other people of course, I’m talking about a fabulous star that has been studied and imaged a gazillion times. Beta Pictoris has been revealed by many telescopes, even Hubble to be home to the most amazing disk. Enter James Webb Space Telescopd and WALLOP, with its increased sensitivty and instrumentation a new, exciting feature emerges. 

Continue reading “Webb Blocks the Star to See a Debris Disk Around Beta Pictoris”

First JWST Instrument Passes Tests

MIRI, ( Mid InfraRed Instrument ), during ambient temperature alignment testing in RAL Space's clean rooms. Image Credit: STFC/RAL Space

[/caption]

One of many instruments that will fly aboard the James Webb Space Telescope (JWST) has just passed critical testing at ESA facilities in the UK. “MIRI”, the Mid-InfraRed Instrument, is being developed by the ESA as a vital part of the JWST mission. Researchers will use MIRI to study exoplanets, distant galaxies, comets and dust-shrouded star forming regions.  In order to work correctly and provide useful data, MIRI needs to consistently operate at temperatures of around 7 kelvin. (-266° C). How do engineers test these components to make sure they work properly in harsh conditions of space?

At the UK Science and Technology Facilities Council’s RAL Space in Oxfordshire, engineers performed tests to ensure the entire instrument assembly works as designed.  Inside the test chamber, special “targets” were used to help simulate scientific observations. The simulated observations will scientists develop the software necessary to calibrate MIRI after JWST’s launch. Based on the initial results of testing, the engineers believe MIRI is working properly and will perform all required science functions extremely well.

Peter Jakobsen, ESA JWST Project Scientist, said,  “Future users of JWST and MIRI are looking forward to learning more about the detailed performance of the instrument once the test results are analysed further in the coming months. The experience gained by the MIRI test team throughout this campaign has sown the seeds for a rich scientific harvest from the JWST mission.”

In the same ESA press release,  Gillian Wright, Principal Investigator and lead of the MIRI European Science Team added, “It is inspiring to see MIRI working extremely well at its operating temperature after so many years in development. The test campaign has been a resounding success and the whole MIRI team can be very proud of this magnificent achievement.”

Sean Keen making adjustments to MIRI during environmental testing in RAL Space's thermal vacuum chamber on August 16th. 2011.

This past July, the U.S House of Representatives’ appropriations committee on Commerce, Justice, and Science proposed a budget for fiscal year 2012 that would cancel JWST’s funding. In a testament to the dedication of the teams involved in JWST’s construction, work continues despite the uncertain fate of the JWST mission.

Aside from the MIRI instrument passing testing, over half of JWST’s mirrors have been polished and coated. Several of the mirror segments have passed rigorous testing, and at this time, nearly three-quarters of JWST’s hardware is being built or tested.

A screenshot of a JWST mirror segment in the laser testing facility at Ball Aerospace in Boulder, Colorado. Credit: John O'Connor, NASA Tech.

Above is a screenshot of a larger panoramic image from the NASA Tech website, showing one of the JWST mirror segments being tested in a laser testing facility at Ball Aerospace in Boulder, Colorado. You can see several panoramic views of the mirror testing at NASA Tech. These are big files, but are well worth the view! Just go to the main page and scroll down for the JWST panoramas.

If you’d like to learn more about the James Webb Space Telescope, visit: http://www.jwst.nasa.gov or: http://webbtelescope.org/webb_telescope

Resources on how you can contact your representative to express support for JWST can be found at: http://savethistelescope.blogspot.com.

You can also read a statement by the American Astronomical Society regarding JWST at: http://aas.org/node/4483 Source: ESA News Release