Webb Sees a Star in the Midst of Formation

In this JWST image, a young protostar is growing larger and emitting jets of material from inside its molecular cloud. Image Credit: NASA, ESA, CSA, STScI

Wherever the JWST looks in space, matter and energy are interacting in spectacular displays. The Webb reveals more detail in these interactions than any other telescope because it can see through dense gas and dust that cloak many objects.

In a new image, the JWST spots a young protostar only 100,000 years old.

Continue reading “Webb Sees a Star in the Midst of Formation”

Something’s Always Been Off About the Crab Nebula. Webb Has Revealed Why!

Crab Nebula by JWST. Credit: NASA, ESA, CSA, STScI, T. Temim (Princeton University)

The Crab Nebula has always fascinated me, albeit amazed me that it doesn’t look anything like a crab! It’s the result of a star that exploded at the end of its life back in 1054 CE, leaving behind what is known as a supernova remnant. Back then the explosion would have been visible to the naked eye, even in daytime. It was thought that the supernova that led to the cloud was from a less evolved star with a core made from oxygen, neon and magnesium. Recent studies by the James Webb Space Telescope reveals that it may actually be the core collapse of an iron rich star. 

Continue reading “Something’s Always Been Off About the Crab Nebula. Webb Has Revealed Why!”

Is the JWST Now an Interplanetary Meteorologist?

This artist’s concept shows what the hot gas-giant exoplanet WASP-43 b could look like. Image Credits: NASA, ESA, CSA, Ralf Crawford (STScI)

The JWST keeps one-upping itself. In the telescope’s latest act of outdoing itself, it examined a distant exoplanet to map its weather. The forecast?

An unending, blistering inferno driven by ceaseless supersonic winds.

Continue reading “Is the JWST Now an Interplanetary Meteorologist?”

Webb Finds Hints of a Third Planet at PDS 70

An artist's illustration of the PDS 70 system, not to scale. The two planets are clearing a gap in the circumstellar disk as they form. As they accrete in-falling material, the heat makes them glow. Image Credit: W. M. Keck Observatory/Adam Makarenko

The exoplanet census now stands at 5,599 confirmed discoveries in 4,163 star systems, with another 10,157 candidates awaiting confirmation. So far, the vast majority of these have been detected using indirect methods, including Transit Photometry (74.4%) and Radial Velocity measurements (19.4%). Only nineteen (or 1.2%) were detected via Direct Imaging, a method where light emitted or reflected from an exoplanet’s atmosphere or surface is used to detect and characterize it. Thanks to the latest generation of high-contrast and high-angular resolution instruments, this is starting to change.

This includes the James Webb Space Telescope and its sophisticated mirrors and advanced infrared imaging suite. Using data obtained by Webb‘s Near-Infrared Camera (NIRCam), astronomers within the MIRI mid-INfrared Disk Survey (MINDS) survey recently studied a very young variable star (PDS 70) about 370 light-years away with two confirmed protoplanets. After examining the system and its extended protoplanetary disk, they found evidence of a third possible protoplanet orbiting the star. These observations could help advance our understanding of planetary systems that are still in the process of formation.

Continue reading “Webb Finds Hints of a Third Planet at PDS 70”

Webb Blocks the Star to See a Debris Disk Around Beta Pictoris

This image from Webb’s MIRI (Mid-Infrared Instrument) shows the star system Beta Pictoris. An edge-on disc of dusty debris generated by collisions between planetesimals (orange) dominates the view. A hotter, secondary disc (cyan) is inclined by about 5 degrees relative to the primary disc. The curved feature at upper right, which the science team nicknamed the “cat’s tail,” has never been seen before. A coronagraph (black circle and bar) has been used to block the light of the central star, whose location is marked with a white star shape. In this image light at 15.5 microns is coloured cyan and 23 microns is orange (filters F1550C and F2300C, respectively). [Image description: A wide, thin horizontal orange line appears at the centre, extending almost to the edges, a debris disc seen edge-on. A thin blue-green disc is inclined about five degrees counterclockwise relative to the main orange disc. Cloudy, translucent grey material is most prominent near the orange main debris disc. Some of the grey material forms a curved feature in the upper right, resembling a cat’s tail. At the centre is a black circle with a bar. The central star, represented as a small white star icon, is blocked by an instrument known as a coronagraph. The background of space is black.]

You think you know someone, then you see them in a slightly different way and BAM, they surprise you. I’m not talking about other people of course, I’m talking about a fabulous star that has been studied and imaged a gazillion times. Beta Pictoris has been revealed by many telescopes, even Hubble to be home to the most amazing disk. Enter James Webb Space Telescopd and WALLOP, with its increased sensitivty and instrumentation a new, exciting feature emerges. 

Continue reading “Webb Blocks the Star to See a Debris Disk Around Beta Pictoris”

Webb Finds Icy Complex Organic Molecules Around Protostars: Ethanol, Methane, Formaldehyde, Formic Acid and Much More

Astronomers have used JWST to study the environments around 30 young protostars and found a vast collection of icy organic molecules. A recent survey identified methane, sulfur dioxide, ethanol, formaldehyde, formic acid, and many more. Image Credit: NASA/ESA/STScI

In the quest to understand how and where life might arise in the galaxy, astronomers search for its building blocks. Complex Organic Molecules (COMs) are some of those blocks, and they include things like formaldehyde and acetic acid, among many others. The JWST has found some of these COMs around young protostars. What does this tell astronomers?

Continue reading “Webb Finds Icy Complex Organic Molecules Around Protostars: Ethanol, Methane, Formaldehyde, Formic Acid and Much More”

JWST Delivers A Fantastic New Image Of Supernova Remnant Cassiopeia A

Like a shiny, round ornament ready to be placed in the perfect spot on a holiday tree, supernova remnant Cassiopeia A (Cas A) gleams in a new image from the NASA/CSA/ESA James Webb Space Telescope. Image Credit: NASA/CSA/ESA

Astronomy is all about light. Sensing the tiniest amounts of it, filtering it, splitting it into its component wavelengths, and making sense of it, especially from objects a great distance away. The James Webb Space Telescope is especially adept at this, as this new image of supernova remnant (SNR) Cassiopeia A exemplifies so well.

Continue reading “JWST Delivers A Fantastic New Image Of Supernova Remnant Cassiopeia A”

JWST Sees Four Exoplanets in a Single System

This artist’s rendering shows the star HR 8799 and one of its four planets, HR 8799c. It illustrates the system at an early stage of evolution. It also shows the star's dusty disk and rocky inner planets. Credit: Dunlap Institute for Astronomy & Astrophysics

When the JWST activated its penetrating infrared eyes in July 2022, it faced a massive wish-list of targets compiled by an eager international astronomy community. Distant, early galaxies, nascent planets forming in dusty disks, and the end of the Universe’s dark ages and its first light were on the list. But exoplanets were also on the list, and there were thousands of them beckoning to be studied.

But one distant solar system stood out: HR 8799, a system about 133 light-years away.

Continue reading “JWST Sees Four Exoplanets in a Single System”

After DART Smashed Into Dimorphos, What Happened to the Larger Asteroid Didymos?

NASA/Johns Hopkins APL.

NASA’s DART mission (Double Asteroid Redirection Test) slammed into asteroid Dimorphos in September 2022, changing its orbital period. Ground and space-based telescopes turned to watch the event unfold, not only to study what happened to the asteroid, but also to help inform planetary defense efforts that might one day be needed to mitigate potential collisions with our planet.

Astronomers have continued to observe and study Dimorphos, well past the impact event. However, Dimorphos is the smaller asteroid in this binary system, and is just a small moon orbiting the larger asteroid Didymos.

The James Webb Space Telescope (JWST) is the only telescope capable of visually distinguishing between the two closely orbiting asteroids. Now, astronomers have made follow-on observations on the system with JWST to see what happened to Didymos after the dust cleared.

Continue reading “After DART Smashed Into Dimorphos, What Happened to the Larger Asteroid Didymos?”

An Exoplanet so Hot it has Clouds Made of Quartz

Artist illustration showing what WASP-17 b could look like based on data obtained from a myriad of ground- and space-based telescopes, including NASA’s Hubble, Webb, and the retired Spitzer space telescopes. This most recent study used MIRI (Webb’s Mid-Infrared Instrument) to identify nanocrystals of quartz within the clouds WASP-17 b. (Credit: NASA, ESA, CSA, and R. Crawford (STScI))

A recent study published in The Astrophysical Journal Letters used data obtained by the James Webb Space Telescope’s (JWST) Mid-Infrared Instrument (MIRI) to identify the presence of quartz nanocrystals in the upper atmosphere of WASP-17 b, an exoplanet whose mass and radius are approximately 0.78 and 1.87 that of Jupiter, respectively, and is located approximately 1,324 light-years from Earth. WASP-17 b is classified as a “puffy” hot Jupiter due to its 3.7-day orbital period, meaning the extreme temperatures could cause unique chemical processes to occur within its atmosphere, but the astronomers were still surprised by the findings.

Continue reading “An Exoplanet so Hot it has Clouds Made of Quartz”