Summer Astronomy, Minimoon & Saturn Opposition 2017

Saturn on June 1st, nearing opposition. Image credit and copyright: Peter on the Universe Today Flickr forum

Summertime astronomy leaves observers with the perennial question: when to observe? Here in Florida, for example, true astronomical darkness does not occur until 10 PM; folks further north face an even more dire situation. In Alaska, the game in late July became “on what date can you first spot a bright planet/star? around midnight.

And evening summer thunder showers don’t help. Our solution is to get up early (4 AM or so) when the roiling atmosphere has settled down a bit.

But there’s one reason to stay up late, as the planet Saturn reaches opposition next week on June 15th and crosses into the evening sky.

Southern hemisphere observers have it best this year, as the ringed planet loiters in southern declinations for the next few years. In fact, Saturn won’t pop up over the celestial equator again until April, 2026. You’ll still be able to see Saturn from mid-northern latitudes, looking low to the south.

First, a brief rundown of the planets this summer. Mars is currently on the far side of the Sun and headed towards solar conjunction of July 26th. Meanwhile, Mercury is headed towards greatest eastern (dusk) elongation on June 21st. Early AM viewers, can follow Venus, which has just passed greatest elongation west of the Sun on June 3rd, just last week. Finally, Jupiter joins Saturn in the dusk sky, high to the south at sunset and headed towards quadrature 90 degrees east of the Sun on July 6th.

Looking eastward on the evening of June 9th. Credit: Stellarium.

There’s another astronomical curiosity afoot this coming weekend: the MiniMoon for 2017. This is the Full Moon nearest to lunar apogee, a sort of antithesis of the over-hyped “SuperMoon.” Lunar apogee occurs on Thursday, June 8th and the Full Moon occurs just 14 hours after.

2017 sees Saturn traveling from the dreaded “13th constellation” of zodiac Ophiuchus the Serpent Bearer into Sagittarius. This also means that Saturn is headed towards bottoming out near 23 degrees southern declination next year in late 2018. Saturn truly lives up to its “father time” namesake, marking up its slow 29 year passage once around the zodiac. This struck home to us a few years back when Saturn passed Spica in the constellation Virgo, right back where I first started observing the planet as a teenager three decades before.

The path of Saturn through the last half of 2017. Credit: Starry Night Education Software.

The rings are also at their widest tilt in 2017, making for an extra photogenic view. 27 degrees wide as seen from our Earthly vantage point is as wide as Saturn’s ring system ever gets. Saturn isn’t really “tipping” back and forth as much as it’s orbiting the Sun and dipping one hemisphere towards us, and then another. In 2017, it’s the planet’s northern hemisphere time to shine.

Saturn: the changing view. Image credit and copyright: Andrew Symes (@failedprotostar)

Here’s the last/next cycle rundown:

-Rings wide open: (southern pole of Saturn tipped earthward): 2003

Rings edge on: 2009

Rings wide open: (northern pole of Saturn tipped earthward): 2017

-Rings edge on: 2025

-Rings wide open: (southern pole of Saturn tipped earthward): 2032

Even a small 60 mm refractor and a low power eyepiece will reveal the most glorious facet of Saturn: its glorious rings. Galileo first saw this confounding view in 1610, and sketched Saturn as a curious double-handled world. In 1655 Christaan Huygens first correctly deduced that Saturn’s rings are a flat plane, fully disconnected from the planet itself.

Crank up the magnification a bit, and the large Cassini Gap in the rings and the shadow play of the rings and the planet becomes apparent. This gives the view an amazing 3-D effect unparalleled in observational astronomy. The shadow cast by the bulk of the planet disappears behind it during opposition, then slowly starts to reemerge to one side after. Other things to watch for include the retro-reflector Seeliger Effect ( also known as opposition surge) as the planet brightens near opposition. And can you spy the bulk of the planet through the Cassini gap?

The moons of Saturn. Image credit and copyright: John Chumack

Hunting for Saturn’s moons is also a fun challenge. Saturn has more moons visible to a backyard telescope than any other planet. Titan is easiest, as the +8 magnitude moon orbits Saturn once every 16 days. In a small to medium-sized (8-inch) telescope, six moons are readily visible: Enceladus, Mimas, Rhea, Dione, Iapetus and Tethys. Large light bucket scopes 10” and larger might just also tease out the two faint +15th magnitude moons Hyperion and Phoebe.

Saturn
Cassini looks back across Saturn’s rings. NASA/Cassini/JPL-Caltech/Space Science Institute

There’s also something else special about Saturn in 2017 in the world of space flight: the venerable Cassini mission comes to an end this September. Hard to believe, this mission soon won’t be with us. Launched in 1997, Cassini arrived at Saturn in in July 2004, and has since provided us with an amazing decade plus of science. The internet and science writing online has grown up with Cassini, and it’ll be a sad moment to see it go.

All thoughts to ponder, as you check out Saturn at the eyepiece this summer.

101 Astronomical Events for 2017: A Teaser

It’s that time of year again… time to look ahead at the top 101 astronomical events for the coming year.

And this year ’round, we finally took the plunge. After years of considering it, we took the next logical step in 2017 and expanded our yearly 101 Astronomical Events for the coming year into a full-fledged guide book, soon to be offered here for free download on Universe Today in the coming weeks. Hard to believe, we’ve been doing this look ahead in one form or another now since 2009.

This “blog post that takes six months to write” will be expanded into a full-fledged book. But the core idea is the same: the year in astronomy, distilled down into the very 101 best events worldwide. You will find the best occultations, bright comets, eclipses and much more. Each event will be interspersed with not only the ‘whens’ and ‘wheres,’ but fun facts, astronomical history, and heck, even a dash of astronomical poetry here and there.

It was our goal to take this beyond the realm of a simple almanac or Top 10 listicle, to something unique and special. Think of it as a cross between two classics we loved as a kid, Burnham’s Celestial Handbook and Guy Ottewell’s Astronomical Calendar, done up in as guide to the coming year in chronological format. Both references still reside on our desk, even in this age of digitization.

And we’ve incorporated reader feedback from over the years to make this forthcoming guide something special. Events will be laid out in chronological order, along with a quick-list for reference at the end. Each event is listed as a one- or two-page standalone entry, ready to be individually printed off as needed. We will also include 10 feature stories and true tales of astronomy. Some of these were  culled from the Universe Today archives, while others are new astronomical tales written just for the guide.

Great American Eclipse
Don’t miss 2017’s only total solar eclipse, crossing the United States! Image credit: Michael Zeiler/The Great American Eclipse.

The Best of the Best

Here’s a preview of some of the highlights for 2017:

-Solar cycle #24 begins to ebb in 2017. Are we heading towards yet another profound solar minimum?

-Brilliant Venus reaches greatest elongation in January and rules the dusk sky.

-45P/Honda-Mrkos-Pajdusakova passes 0.08 AU from Earth on February 11th, its closest passage for the remainder of the century.

-An annular solar eclipse spanning Africa and South America occurs on February 26th.

A sample occultation map from the book. Image credit: Occult 4.1.2.
A sample occultation map from the book. Image credit: Occult 4.1.2.

-A fine occultation of Aldebaran by the Moon on March 5th for North America… plus more occultations of the star worldwide during each lunation.

-A total solar eclipse spanning the contiguous United States on August 21st.

-A complex grouping of Mercury, Venus, Mars and the Moon in mid-September.

-Saturn’s rings at their widest for the decade.

Getting wider... the changing the of Saturn's rings. Image credit and copyright: Andrew Symes (@FailedProtostar).
Getting wider… the changing face of Saturn’s rings. Image credit and copyright: Andrew Symes (@FailedProtostar).

-A fine occultation of Regulus for North America on October 15th, with  occultations of the star by the Moon during every lunation for 2017.

-Asteroid 335 Roberta occults a +3rd magnitude star for northern Australia…

And that’s just for starters. Entries also cover greatest elongations for the inner planets and oppositions for the outer worlds, the very best asteroid occultations of bright stars, along with a brief look ahead at 2018.

Get ready for another great year of skywatching!

And as another teaser, here’s a link to a Google Calendar download of said events, complied by Chris Becke (@BeckePhysics). Thanks Chris!

November’s Supermoon 2016 – Closest of a Lifetime?

What’s that, rising in the sky?

By now, you’ve heard the news. We’ll spare you the “it’s a bird, it’s a plane…” routine to usher in the Supermoon 2016. This month’s Full Moon is not only the closest for the year, but the nearest Full Moon for a 80 year plus span.

Like Blue and Black Moons, a Supermoon is more of a cultural phenomenon than a true astronomical event. The Moon’s orbit is elliptical, taking it from 362,600 to 405,400 km from the Earth in the course of its 27.55 day anomalistic orbit from one perigee to the next. For the purposes of this week’s discussion, we consider a Supermoon as when the Full Moon occurs within 24 hours of perigee, and a Minimoon as when the Full Moon occurs within 24 hours of apogee. From the Earth, the Moon varies in apparent size from 29.3” to 34.1” across. This month, the Moon reaches perigee on November 14th at 356,511 kilometers distant, 2 hours and 22 minutes before Full.

A perigee 'Supermoon' versus an apogee 'Minimoon'. Image credit and copyright: Raven Yu.
A perigee ‘Supermoon’ versus an apogee ‘Minimoon’. Image credit and copyright: Raven Yu.

This is the closest perigee Moon for 2016, beating out the April 7th, 2016 perigee Moon by just 652 kilometers. Perigee can vary over a span of 2,800 kilometers. In the 21st century, the farthest lunar perigee (think the ‘most distant near point’) occurs on January 3rd, 2100 at 370,356 kilometers distant, while the closest perigee of the century (356,425 kilometers) occurs on December 6th , 2052.

When the Moon reaches Full on November 14th at 13:51 UT, it’s just 356,520 kilometers distant, (that is , as measured from the Earth’s center) the closest Full Moon since January 26th, 1948 (356,490 km) and until November 25th , 2034 (356,446 km) losing out to either dates by just 21 kilometers.

Why does perigee vary? Well, as the Moon orbits the Earth, the Sun tugs our large natural satellite’s orbit around as well, in an 8.85 year cycle known as the precession of the line of apsides. Earth’s orbit is elliptical as well, and the tugging of the Sun (and to a much lesser degree, the other planets in the solar system) alters the perigee and apogee points slightly based on where the Earth-Moon pair fall in their swing about a common barycenter.

The November Full Moon is also known as the Full Beaver Moon by the Algonquin Native Americans, a good time to ensure a supply of winter furs before the swamps froze over. A good sign that even in 2016, ‘Winter is Coming.’

Does the Moon look any larger to you than usual as it rises to the east opposite to the setting Sun on Monday night? When the Moon reaches Full, it passes the zenith as seen from the central Indian Ocean region just south of Sri Lanka, 354,416 km distant. Of course, as the Moon rises, it’s actually one full Earth radii more distant than when straight overhead at the zenith.

A side-by-side 'Super' vs 'Minimoon.' Image credit and copyright: Marco Langbroek.
A side-by-side ‘Super’ vs ‘Minimoon.’ Image credit and copyright: Marco Langbroek.

Would you notice any difference in the size of the November Full Moon, if you didn’t know better? The 4′ odd difference between an apogee and perigee Full Moon is certainly discernible in side-by-side images… but it’s interesting to note that early cultures did not uncover the elliptical nature of the Moon’s motion, though it certainly would have been possible. Crystalline spheres ruled the day, a sort of perfection that was just tough to break in the minds of many.

Be sure to enjoy the rising Full Moon on Monday night, the largest for many years to come.

April Lunacy: Getting Ready for the Full ‘Mini-Moon’

2015 Mini-Moon

Do you welcome the extra evening light of the Full Moon, or curse the additional light pollution? Either way, this week’s Full Moon on Friday April 22nd is special. It’s the smallest Full Moon of 2016, something we here at Universe Today have christened the Mini-Moon.

Mini-Moon 2016: This year’s Mini-Moon falls on April 22nd at 5:25 Universal Time (UT), just 13 hours and 19 minutes after lunar apogee the evening prior at 16:06 UT on April 21st. Though apogee on the 21st is 406,350 km distant – a bit on the far end, but the third most distant for the year by 300 km — this week’s Full Moon is the closest to apogee for 2016 time-wise. The 2015 Mini-Moon was even closer, in the 10 hour range, but you’ll have to wait until December 10th, 2030 to find a closer occurance.

Image credit and copyright:
The Mini-Moon versus the 2011 Supermoon. Image credit and copyright: Ken Lord.

What is the Mini-Moon, you might ask? As with the often poorly defined Supermoon, we like to eschew the ambiguous ‘90% of its orbit’ definition, and simply refer to it as a Full Moon occurring within 24 hours of lunar apogee, or its farthest point from the Earth in its orbit.

Fun fact: the 29.55 day period from perigee to perigee (or lunar apogee-to-apogee) is known as an anomalistic month.

Image credit: Dave Dickinson
Mini-Moons by year for the remainder of the decade. Note that the 2020 Full Moon is also the 2nd of the month… A ‘Mini-Blue Halloween Moon?’ Image credit: Dave Dickinson

Thank our Moon’s wacky orbit for all this lunacy. Inclined 5.14 degrees relative to the ecliptic plane, the Moon returns to the same phase (say, Full back to Full) every 29.53 days, known as a synodic month. The Moon can appear 33.5′ across during perigee, and shrink to 29.4′ across near apogee.

The appearance of the Moon through one synodic period. Note that in addition to rocking back and forth (libration) and side-to-side (nutation), the Moon appears to swell and shrink in size. Wikimedia Commons graphic in the public Domain.
The appearance of the Moon through one synodic period. Note that in addition to rocking back and forth (libration) and side-to-side (nutation), the Moon appears to swell and shrink in size. Wikimedia Commons graphic in the Public Domain.

And don’t fear the ‘Green Moon,’ and rumors going ’round ye’ ole internet that promise a jaded Moon will occur in April or May; this is 100% non-reality based, seeking to join the legends of Super, Blood, and Full Moons, Black and Blue.

Image faked by: David Dickinson.
No. Just. No. Image faked by: David Dickinson.

The April Full Moon is also known as the Full Pink Moon to the Algonquin Indians. The April Full Moon, can, on occasion be the Full Moon ushering in Easter (known as the Paschal Moon) as per the rule established by the 325 AD council of Nicaea, stating Easter falls on the first Sunday after the first Full Moon after the fixed date of the Vernal Equinox of March 21st. Easter can therefore fall as late as April 25th, as next occurs on 2038. The future calculation of Easter by the Church gets the Latin supervillain-sounding name of Computus.

April 21st. Image credit: Stellarium
Looking east on the evening of April 21st. Image credit: Stellarium

Of course, the astronomical vernal equinox doesn’t always fall on March 21st, and to complicate matters even further, the Eastern Orthodox Church uses the older Julian Calendar and therefore, Easter doesn’t always align with the modern western Gregorian calendar used by the Roman Catholic Church.

The Moon can create further complications in modern timekeeping as well.

Here’s one wonderful example we recently learned of in our current travels. The Islamic calendar is exclusively based on the synodic cycle of the Moon, and loses 11 days a year in relation to the Gregorian solar calendar. Now, Morocco officially adopted Daylight Saving (or Summer) Time in 2007, opting to make the spring forward during the last weekend of March, as does the European Union to the north. However, the country reverts back to standard time during the month of Ramadan… otherwise, the break in the daily fast during summer months would fall towards local midnight.

You can see a curious future situation developing. In 2016, Ramadan runs from sundown June 5th, to July 4th. Each cycle begins with the sighting of the thin waxing crescent Moon. However, as Ramadan falls earlier, you’ll get a bizarre scenario such as 2022, when Morocco springs forward on March 27th, only to fall back to standard time six days later on April 2nd on the start of Ramadan, only to jump forward again one lunation later on April 30th!

Morocco is the only country we’ve come across in our travels that follows such a convoluted convention of timekeeping.

Fun fact #2: the next ‘Mini-Moon’ featuring a lunar eclipse occurs on July 27th 2018.

And the Spring Mini-Moon sets us up for Supermoon season six months later this coming October-November-December. Though lunar perigees less than 24 hours from Full usually occur as a trio, an apogee less than 24 hours from Full is nearly always a solitary affair, owing to the slightly slower motion of the Moon at a farther distance.

Don’t miss the shrunken Mini-Moon rising on the evenings of Thursday April 21st and Friday 22nd, coming to a sky near you.

The Mini-Moon Cometh: Catch the Smallest Full Moon of 2015 This Thursday

Supermoons. Blood Moons. Moons both Black and Blue… by now, you’d think that there was nothing new under the Sun (or Moon, as it were) when it comes to new unofficial lunar terminology.

Sure, the Moon now seems more colorful than controversial viral dress shades. Love it or loathe it, the Internet can sure set a meme in motion. And this week’s Full Moon on Thursday evening offers up one of our faves, as the most distant Full Moon of 2015 occurs on March 5th. Yup, the Mini-Moon is indeed once again upon us, a time when the Full Moon appears slightly smaller than usual as seen from the Earth. But can you really tell the difference?

The third Full Moon of the year occurs this week on Thursday, March 5th. Also known as the Worm or Sap Moon by the Algonquin tribes of New England, the moment of Full phase occurs at 18:07 Universal Time (UT) or 1:07 PM Eastern Standard Time (EST). This is also just over 10 hours after apogee, which occurs at 7:36 UT/2:36 AM EST. This month’s apogee is also an exceptionally distant one, measuring 406,385 kilometres from the center of the Earth to the center of the Moon. This is just 80 kilometres shy of the most distant apogee of 2015 on September 14th, which occurs when the Moon is near New phase.

Stellarium
Can you spy Jupiter next to the waxing gibbous Moon before sunset tonite? Credit: Stellarium.

Apogee for the Moon ranges from 404,000 to 406,700 kilometres distant, and the Full Moon appears 29.3 arc minutes across near apogee versus 34.1’ across near perigee as seen from the Earth.

This is also the closest apogee near a Full Moon time-wise until January 27th, 2032.

What is a Mini-Moon? As with a Supermoon, we prefer simply defining a Mini-Moon as a Full Moon which occurs within 24 hours of apogee. That’s much more definitive in our book rather than the cryptic and often cited ‘within 90% of its orbit’ refrain for Supermoons.

And speaking of which, we’ve got three ‘Super’ Full Moons in 2015, with the very closest Super (Duper?) Full Moon occurring within an hour of perigee on September 28th during the final total lunar eclipse of the ongoing tetrad… what will the spin doctors of the Internet make of this? A ‘Super Duper Blood Moon,’ anyone?

The path of the Moon this week also takes it towards the Fall equinoctial point in the astronomical constellation of Virgo, as it crosses Leo and nicks the corner of the non-zodiacal constellation Sextans. The Moon reaches Full two weeks prior to the Vernal Equinox, which falls this year on March 20th. Keep an eye on the Moon, as the first eclipse of 2015 and this year’s only total solar eclipse also occurs just 13 hours prior to the equinox for observers in the high Arctic. (More on that next week).

Can’t wait til Thursday? Tonight, observers across Canada, northern Maine, and Europe will see a fine occultation of the star Acubens (a.k.a. Alpha Cancri) by the 94% illuminated waxing gibbous Moon:

Credit:
The ‘shadow footprint’ for tonight’s occultation of Acubens by the Moon. Credit: Occult 4.0.1.

Alpha Cancri is 175 light years distant, and folks living along the U.S./Canadian border will be treated to a fine grazing occultation as the double star plays hide and seek along the limb of the Moon. This is number 17 in an ongoing series of 21 occultations of the star by the Moon stretching out until June 20th, 2015. There’s a wide separation of 11” between the star’s A and B components, and there are suspicions from previous lunar occultations that Alpha Cancri A may itself be a double star as well.

We caught a similar occultation of the star Lambda Geminorum by the Moon this past Friday:

Ever feel sorry for moonless Venus? This Wednesday night also offers a chance to spy Venus with a brief ‘pseudo-moon,’ as +6th magnitude Uranus passes just 15’ — less than half the apparent diameter of a Full Moon — from brilliant -4th magnitude Venus. Neith, the spurious 18th century moon of Venus lives! From the vantage point of Venus on March 4th, the Earth and Moon would shine at magnitudes -2.3 and +1.5, respectively, and sit about 4 arc minutes apart.

Starry Night Education Software.
The rising Full ‘Mini-Moon’ of March 5th. Credit: Starry Night Education Software.

Does the rising Full Moon look smaller to you than usual this week? While the apparent change in diameter from apogee to perigee is slight, it is indeed noticeable to the naked eye observers. Remember, the Moon is actually about one Earth radius (6,400 kilometres) more distant on the local horizon than when it’s directly overhead at the zenith. The Moon is also moving away from us at a current rate of 1-2 centimetres a year, meaning that Mini-Moons will get ever more distant in epochs hence.

Already, annular solar eclipses are currently more common than total ones by a ratio of about 11 to 9. The first annular eclipse as seen from the Earth went unheralded some time about 900 million to a billion years ago, and 1.4 billion years hence, the last total solar eclipse will occur.

Photo by author.
The rising waxing gibbous Moon against the daytime sky. Photo by author.

Be sure to get out and enjoy the rising Mini-Moon later this week!

-Send those Mini-Moon pics in to Universe Today.

-Looking for eclipse sci-fi? Check out Dave Dickinson’s eclipse-fueled tales Exeligmos and Shadowfall.

A “MiniMoon” Seen Around the World

So, did last night’s Full Wolf Moon seem a bit tinier than usual? It was no illusion, as avid readers of Universe Today know. As we wrote earlier this week, last night’s Full Moon was the most distant for 2014, occurring just a little under three hours after apogee.

The Full Moon, a "Moon Dog" halo, and a rare parhelic (or do you say Palunic?) arc as seen from North Slope Borough County, Alaska. Credit-Jason Ahrns.
The Full Moon, a “Moon Dog” halo, and a rare parhelic (or do you say Palunic?) arc as seen from North Slope Borough County, Alaska. Credit-Jason Ahrns.

Sure, the Moon reaches apogee every lunation, at a distance nearly as far.  In fact, the Moon at apogee can be as far as 406,700 kilometres distant, and last night’s apogee, at 406,536 kilometres, is only the second farthest for 2014. The most distant apogee for 2014 falls on July 28th at 3:28 Universal Time (UT) at just 32 kilometres farther away from our fair planet at 406,568 kilometres distant.

A 20 image composite shot using a Canon 60Da camera and a a 10" Newtonian telescope. Credit-Stephen Rahn.
A 20 image composite shot using a Canon 60Da camera and a a 10″ Newtonian telescope. Credit-Stephen Rahn.

What made last night’s MiniMoon special was its close proximity in time to the instant of Full phase. The July 2014 apogee, for example, will occur just a day and four hours from New phase.

The 2014 MiniMoon rising behind clouds from Hudson, Florida. Photo by author.
The 2014 MiniMoon rising behind clouds from Hudson, Florida. Photo by author.

Of course, it isn’t the Moon that’s doing the shrinking, though you’d be surprised the stuff we’ve seen around ye ole Web even on reputable news sites over the past week. The variation of the apparent size of the Full Moon does make for an interesting study in perception. The Moon varies in size from apogee to perigee from about 29.3’ across to 34.1’. This is variation amounts to 14% in apparent diameter.

The Full MiniMoon, clouds, and Jupiter. Credit- Shaun Reynolds, Bungay UK.
The Full MiniMoon, clouds, and Jupiter. Credit– Shaun Reynolds (@shaunreylec), Bungay UK.

Here’s an interesting challenge that you can do for a one year period, requiring just a working set of eyes: observe the Full Moon for 12 successive lunations. Can you judge which one was the “SuperMoon” and which one was the “MiniMoon” without prior knowledge?

A "MiniMoon Nebula..." The Full Moon illuminating foreground clouds. The HDR visualization of the Moon was added for context. Taken with a tripod mounted Nikon P90 Bridge camera. Credit: Giuseppe Petricca of Sulmona, Abruzzo, Italy.
A “MiniMoon Nebula…” The Full Moon illuminating foreground clouds. The HDR visualization of the Moon was added for context. Taken with a tripod mounted Nikon P90 Bridge camera. Credit: Giuseppe Petricca of Sulmona, Abruzzo, Italy.

And as you can see, we also got plenty of pictures here at Universe Today from readers of the Mini-Moon from worldwide.

The MiniMoon shot using a mobile phone held up to the eyepeice of a telescope. Credit-Andrew Millarkie (@Millarkie)
The MiniMoon shot using a mobile phone held up to the eyepiece of a telescope. Credit-Andrew Millarkie (@Millarkie) Glasgow, Scotland.

The rare occurrence of an “Extreme-MiniMoon” — or do you say “Ultra?” — also sparked a lively discussion about the motion of the Moon, how rare this event is, and when it was last and will next be surpassed. A fun online tool to play with is Fourmilab’s Lunar Apogee and Perigee Calculator. Keep in mind, the motion of the Moon is complex, and accuracy for most planetarium programs tends to subside a bit as you look back or forward in time. The distances used in Fourmilab’s calculations are also geocentric, accounting for the center-to-center distance of the Earth-Moon system.

The MiniMoon versus streetlights as seen from Nueva Casarapa, Venezulua. Credit: Jose Mauricio Rozada (@jmrozada)
The MiniMoon versus streetlights as seen from Nueva Casarapa, Venezuela. Credit: Jose Mauricio Rozada (@jmrozada)

Suffice to say, this year’s Full MiniMoon was the most distant for several decades before 2014 or after.

Anthony Cook of the Griffith Observatory notes that JPL’s Horizons web interface gives a max distance for the Moon of 406,533 kilometres at 1:35 UT earlier today, 3 hours and 19 minutes prior to Full.

The Full MiniMoon glimpsed between clouds as seen from central Illinois. Credit-Matt Comerford, (@kb9uwu)
The Full MiniMoon glimpsed between clouds as seen from central Illinois. Credit-Matt Comerford, (@kb9uwu)

The next closest spread of apogee versus perigee occurs on November 18th, 1994 at 1 hour and 51 minutes apart, and 2014’s Mini-Moon won’t be surpassed in this regard until May 13th, 2052. Looking at the distances for the Moon on these dates using Starry Night, however, we get an slightly closer occurrence of 406,345 kilometres for 1994 and 406,246 kilometres for 2052.

The Full MiniMoon rising behind a stand of trees. Credit- Sculptor Lil.
The Full MiniMoon rising behind a stand of trees. Credit– Sculptor Lil.

And to top it off, the 1994 Mini-Moon was during a partial penumbral eclipse as well… we’ll leave that as a homework assignment for the astute readers of Universe Today to calculate how often THAT occurs. It should be fairly frequent over the span of a century, as the Moon has to be at Full phase for a total lunar eclipse to occur.

The MiniMoon as captured by Manish Agarwal from Rajasthan, India.
The MiniMoon as captured by Manish Agarwal (@iManishAgarwal) from Rajasthan, India.

Looking over a larger span of time, @blobrana notes on Twitter that closer occurrences of apogee versus Full Moon with the same approximate circumstances as 2014 also occurred on October 29th 817 AD (with a 1 hour and 38 minute difference) and won’t occur again until December 20th, 2154. If research can prove or disprove that these events were even more distant, then the 2014 Extreme MiniMoon was a millennial rarity indeed…

Perhaps this won’t be the last we’ve heard on the subject!

See the Smallest Full Moon of 2014: It’s the “Return of the Mini-Moon”

 Last month, (and last year) we wrote about the visually smallest Full Moon of 2013. Now, in a followup  act, our natural satellite gives  us an even more dramatic lesson in celestial mechanics with an encore performance just one lunation later with the smallest Full Moon of 2014.

We’ve noted the advent of the yearly Mini-Moon, a bizzaro twin to the often over-hyped “SuperMoon,” or Proxigean Full Moon. Occurring approximately six months apart, you can always expect lunar apogee to roughly coincide with the instant of a Full Moon about half a year after it coincides with perigee. In fact, the familiar synodic period that it takes the Moon to return to like phase (such as Full back to Full) of 29.5 days has a lesser known relative known as the anomalistic month, which is the period of time it takes the Moon to return to perigee at 27.55 days.

But the circumstances for “Mini-Moon 2014” are exceptional. The first Full Moon of the year occurs on the night of January 15th at 11:52 PM EST/4:52 Universal Time (on January 16th). This is just 2 hours and 59 minutes after the Moon reaches apogee at 406,536 kilometres distant at 8:53 PM EST/1:53 UT. This isn’t the farthest apogee that occurs in 2014, but it’s close: the Moon is just 32 kilometres more distant on July 28th, 2014. Apogee can vary from 404,000 to 406,700 kilometres, and this month’s apogee falls just 164 kilometres short of the maximum value.

As you can see, this year’s Mini-Moon falls extremely close to apogee… in fact, you have to go all the way back to the Full Moon of November 18th, 1994 to find a closer occurrence, and this year’s won’t be topped until May 13th, 2052! The Moon will appear only 29’ 23” in size on Wednesday night at moonrise, very close to its minimum possible value of 29’ 18”. This is also almost 5 arc minutes smaller than the largest “Super-Moon” possible.

Cool factoid: you actually move closer to the Moon as it rises, until it transits your local meridian and you begin moving away from it, all due to the Earth’s rotation. You can thus gain and lose a maximum of one Earth radii distance from the Moon in the span one night.

We also just passed the most northern Moon of 2014, as it reached a declination of 19 degrees 24’ north this morning at 8:00 UT/3:00 AM EST. This is a far cry from the maximum that can occur, at just over 28 degrees north. This is because we’re headed towards a “shallow year” as the Moon’s motion bottoms out relative to the ecliptic in 2015 and once again begins to widen out in its 18+ year cycle to its maximum in 2024-25.

The position of the Moon Monday night on January 13th in Orion. Credit: Stellarium
The position of the Moon Monday night on January 13th in Orion. Credit: Stellarium

This week’s Moon also visits some interesting celestial targets as well. The waxing gibbous Moon sits just 5.1 degrees south of the open cluster M35 tonight. Notice something odd about the Moon’s position Monday night? That’s because it is passing through Orion the Hunter, one of the six non-zodiacal constellations that it can be found in. Can you name the other five? Hint: one was the “13th sign of the zodiac that created a non-traversy a few years back.

On Tuesday evening, the Moon passes six degrees from the planet Jupiter. This presents a fine time to try and spot the planet in the daytime to the Moon’s upper left, just a few hours prior to sunset.

The Moon will also occult the +3.6 magnitude star Lambda Geminorum on January 15th for observers in northwestern North America. In fact, viewers along a line crossing central British Columbia will witness a spectacular graze along the lunar limb as the star winks out behind lunar mountains and pops into view as it shines through lunar valleys along the edge of the Moon. This can make for an amazing video capture, we’re just throwing that out there…

The occultation footprint for Lambda Geminorum for January 15th. (Created using Occult 4.01 software)
The occultation footprint for Lambda Geminorum for January 15th. (Created using Occult 4.10.11 software)

In addition to being this year’s Mini-Moon, the January Full Moon is also known as the Wolf Moon in the tradition of the Algonquin Native Americans, as January was a time of the mid-winter season when starving wolf packs would howl through the long cold night. The January Full Moon is also sometimes referred to as “The Moon after Yule,” marking the first Full Moon after Christmas.

And just when is the next Super Moon, you might ask? Well, 2014 has three Full Moons occurring within 24 hours of perigee starting on July 15th and finishing up on September 8th. But the most notable is on August 10th, when the Moon passes perigee just 27 minutes from Full. Expect it to be preceded by the usual lunacy that surrounds each annual “Super Moon” as we once again bravely battle the forces of woo and describe just exactly what a perigee Full Moon isn’t capable of. Yes, we still prefer the quixotic term “Proxigean Moon,” but there you go.

Also, be sure to wave a China’s Chang’e-3 lander and rover in the Bay of Rainbows (Sinus Iridum) as you check out this week’s Full Moon, as it just experienced its first lunar sunrise this past week.

Be sure to send those Mini-Moon pics and more in to Universe Today, and let’s get this week’s #MiniMoon trending on Twitter!

The 2013 Super and Mini Moon Together in One Photo

Astrophotographer Giuseppe Petricca from Pisa, Tuscany, Italy managed to capture two of the very ‘special’ full Moons from 2013 and created a comparative mosaic. Here is both the 2013 “SuperMoon” in June – when the Moon is the closest to Earth in its orbit and visually largest – and the recent December 2013 “MiniMoon” — the most distant and visually smallest Full Moon of the year.

“I was amazed, to say the least, from the actual difference!” Petricca told Universe Today via email. “The motto ‘It’s not that evident until you, by yourself, get to notice it!’ applies perfectly to this situation.

While with naked eye, the full Moon seems about the same size every month, the difference in its visual size is clearly visible via pictures. Of course, the Moon itself doesn’t change size, it’s just how big or small it appears in the sky due to the eccentricities in its orbit around Earth.

The two pictures were both taken at the same focal length, with a simple non reflex camera, a Nikon P90, on tripod, with matching ISO speed and exposure, at ISO 100, f5.0, 1/200″. Both taken from Pisa, Tuscany, Italy.

You can read all about the recent “MiniMoon” here, and find out more about the mechanics of the “SuperMoon” here.