You’re Looking at a Map of the Milky Way’s Magnetic Field

Colour shows the polarized microwave emission measured by QUIJOTE. The pattern of lines superposed shows the direction of the magnetic field lines. Credit: The QUIJOTE Collaboration.

Using telescopes that study the sky in the microwave part of the electromagnetic spectrum, astronomers have successfully mapped the structure of the magnetic field of the Milky Way galaxy. While magnetic fields are difficult to measure in space, an international team of astronomers used the Teide Observatory on Tenerife in the Canary Islands to conduct 10 years of observations.

Continue reading “You’re Looking at a Map of the Milky Way’s Magnetic Field”

Astronomers Used a Fast Radio Burst to Probe the Structure of the Milky Way

Artist's impression of the huge halo of hot gas surrounding the Milky Way Galaxy. Credit: NASA

In the past decade and a half, hundreds of Fast Radio Bursts (FRBs) have been detected by astronomers. These transient energetic bursts occur suddenly, typically last for just a few milliseconds, and are rarely seen again (except in the rare case of repeating bursts). While astronomers are still not entirely sure what causes this phenomenon, FRBs have become a tool for astronomers hoping to map out the cosmos. Based on the way radio emissions are dispersed as they travel through space, astronomers can measure the structure and distribution of matter in and around galaxies.

Using the Deep Synoptic Array (DSA) at the Owens Valley Radio Observatory (OVRO), a team of astronomers from Caltech and Cornell University used an intense FRB from a nearby galaxy to probe the halo of hot gas that surrounds the Milky Way. Their results show that our galaxy has significantly less visible (“baryonic” or “normal”) matter than previously expected. These findings support theories that matter is regularly ejected from our galaxy due to stellar winds, supernovae, and accreting supermassive black holes (SMBHs).

Continue reading “Astronomers Used a Fast Radio Burst to Probe the Structure of the Milky Way”

Is the Milky Way… Normal?

Studying the large-scale structure of our galaxy isn’t easy. We don’t have a clear view of the Milky Way’s shape and features like we do of other galaxies, largely because we live within it. But we do have some advantages. From within, we’re able to carry out close-up surveys of the Milky Way’s stellar population and its chemical compositions. That gives researchers the tools they need to compare our own galaxy to the many millions of others in the Universe.

This week, an international team of researchers from the USA, UK, and Chile released a paper that does just that. They dug through a catalogue of ten thousand galaxies produced by the Sloan Digital Sky Survey, searching for galaxies with similar attributes to our own.

They discovered that the Milky Way has twins – many of them – but just as many that are only superficially similar, with fundamental differences buried in the data. What they discovered has implications for the future evolution of our own galaxy.

Continue reading “Is the Milky Way… Normal?”

How Do Stars Get Kicked Out of Globular Clusters?

Hubble image of Messier 54, a globular cluster located in the Sagittarius Dwarf Galaxy. Credit: ESA/Hubble & NASA

Globular clusters are densely-packed collections of stars bound together gravitationally in roughly-shaped spheres. They contain hundreds of thousands of stars. Some might contain millions of stars.

Sometimes globular clusters (GCs) kick stars out of their gravitational group. How does that work?

Continue reading “How Do Stars Get Kicked Out of Globular Clusters?”

The Milky Way has an Inner Ring, Just Outside the Core

This image from the NASA/ESA Hubble Space Telescope reveals a spiral galaxy named Messier 95 (also known as M95 or NGC 3351). Located about 35 million light-years away in the constellation of Leo (The Lion), this swirling spiral was discovered by astronomer Pierre Méchain in 1781, and catalogued by French astronomer Charles Messier just four days later. Messier was primarily a comet hunter, and was often left frustrated by objects in the sky that resembled comets but turned out not to be. To help other astronomers avoid confusing these objects in the future, he created his famous catalogue of Messier objects. Most definitely not a comet, Messier 95 is actually a barred spiral galaxy. The galaxy has a bar cutting through its centre, surrounded by an inner ring currently forming new stars. Also our own Milky Way is a barred spiral. As well as hosting this stellar nursery, Messier 95 is a known host of the dramatic and explosive final stages in the lives of massive stars: supernovae. In March 2016 a spectacular supernova named SN 2012aw was observed in the outer regions of one of Messier 95’s spiral arms. Once the light from the supernova had faded, astronomers were able to compare observations of the region before and after the explosion to find out which star had “disappeared” — the progenitor star. In this case, the star was an especially huge red supergiant up to 26 times more massive than the Sun.

In the past century, astronomers have learned a great deal about the cosmos and our place in it. From discovering that the Universe is in a constant state of expansion to the discovery of the Cosmic Microwave Background (CMB) and the Big Bang cosmological model, our perception of the cosmos has expanded immensely. And yet, many of the most profound astronomical discoveries still occur within our cosmic backyard – the Milky Way Galaxy.

Compared to other galaxies, which astronomers can resolve with relative ease, the structure and size of the Milky Way have been the subject of ongoing discovery. The most recent comes from the Max Planck Institute for Extraterrestrial Physics (MPE), where scientists have found a previously undiscovered inner ring of metal-rich stars just outside the Galactic Bar. The existence of this ring has revealed new insights into star formation in this region of the galaxy during its early history.

Continue reading “The Milky Way has an Inner Ring, Just Outside the Core”

Gaia Finds Ancient Satellite Galaxy Pontus Embedded in Milky Way

Artist's impression of the ESA's Gaia Observatory. Credit: ESA

A recent study looked at stellar streams hidden in Gaia data, to uncover evidence of an ancient remnant dubbed Pontus.

Our home galaxy the Milky Way is a monster with a ravenous past. In its estimated 12 billion years of existence, our galaxy has swallowed smaller satellite galaxies whole, with collisions resulting in massive rounds of star formation. We see threads of these remnant mergers as streams of stars and clusters, strung out around the Milky Way.

Continue reading “Gaia Finds Ancient Satellite Galaxy Pontus Embedded in Milky Way”

Astronomers Scan the Center of the Milky Way for Any Sign of Intelligent Civilizations. Nothing but Silence.

This is an image of the center of the Milky Way. The bright white area right of center is home of the supermassive black hole Sagittarius A star. Image Credit: By NASA/JPL-Caltech/ESA/CXC/STScI - http://photojournal.jpl.nasa.gov/catalog/PIA12348See also http://www.spacetelescope.org/images/opo0928a/ and http://hubblesite.org/newscenter/archive/releases/2009/28/image/a/, Public Domain, https://commons.wikimedia.org/w/index.php?curid=24958921

Are there civilizations somewhere else in the Universe? Somewhere else in the Milky Way? That’s one of our overarching questions, and an answer in the affirmative would be profound.

Humanity’s pursued the Search for Extraterrestrial Intelligence (SETI) in one form or another since shortly after the advent of radio waves in the early 20th century. Efforts have waxed and waned over the decades, but the search has never been completely abandoned.

The search detected transient hints in the form of unexplained radio waves in the past, but nothing that comprises reliable evidence. Now a new search for technosignatures in the Milky Way’s center has turned up nothing.

Continue reading “Astronomers Scan the Center of the Milky Way for Any Sign of Intelligent Civilizations. Nothing but Silence.”

Nearby Supernovae Exploded Just a few Million Years Ago, Leading to a Wave of Star Formation Around the Sun

Artist's illustration of the Local Bubble with star formation occurring on the bubble's surface. Scientists have now shown how a chain of events beginning 14 million years ago with a set of powerful supernovae led to the creation of the vast bubble, responsible for the formation of all young stars within 500 light years of the Sun and Earth. Credit: Leah Hustak (STScI)

The Sun isn’t the only star in this galactic neighbourhood. Other stars also call this neighbourhood home. But what’s the neighbourhood’s history? What triggered the birth of all those stars?

A team of astronomers say they’ve pieced the history together and identified the trigger: a series of supernovae explosions that began about 14 million years ago.

Continue reading “Nearby Supernovae Exploded Just a few Million Years Ago, Leading to a Wave of Star Formation Around the Sun”

An Incredible View Into the Heart of the Small Magellanic Cloud

A radio-telescope image of the Small Magellanic Cloud reveals more detail than ever seen before. Image Credit: N. Pingel et al.

The Small Magellanic Cloud (SMC) is over 200,000 light-years away, yet it’s still one of our galaxy’s closest neighbours in space. Ancient astronomers knew of it, and modern astronomers have studied it intensely. But the SMC still holds secrets.

By studying it and revealing its structure in more detail, astronomers at The Australian National University hope to grow our understanding of the SMC and galaxies in general.

Continue reading “An Incredible View Into the Heart of the Small Magellanic Cloud”

Best Image Ever Taken of Stars Buzzing Around the Milky Way’s Supermassive Black Hole

This visible light wide-field view shows the rich star clouds in the constellation of Sagittarius (the Archer) in the direction of the centre of our Milky Way galaxy. The entire image is filled with vast numbers of stars — but far more remain hidden behind clouds of dust and are only revealed in infrared images. This view was created from photographs in red and blue light and forming part of the Digitized Sky Survey 2. The field of view is approximately 3.5 degrees x 3.6 degrees.

It all began with the discovery of Sagittarius A*, a persistent radio source located at the Galactic Center of the Milky Way that turned out to be a supermassive black hole (SMBH). This discovery was accompanied by the realization that SMBHs exist at the heart of most galaxies, which account for their energetic nature and the hypervelocity jets extending from their center. Since then, scientists have been trying to get a better look at Sag A* and its surroundings to learn more about the role SMBHs play in the formation and evolution of our galaxy.

This has been the goal of the GRAVITY collaboration, an international team of astronomers and astrophysicists that have been studying the core of the Milky Way for the past thirty years. Using the ESO’s Very Large Telescope Interferometer (VLTI), this team obtained the deepest and sharpest images to date of the region around Sag A*. These observations led to the most precise measurement yet of the black hole’s mass and revealed a never-before-seen star that orbits close to it.

Continue reading “Best Image Ever Taken of Stars Buzzing Around the Milky Way’s Supermassive Black Hole”