Scientists Find Evidence of Extreme Methane Storms On Titan

Titan's atmosphere makes Saturn's largest moon look like a fuzzy orange ball in this natural-color view from the Cassini spacecraft. Cassini captured this image in 2012. Image Credit: NASA/JPL-Caltech/Space Science Institute

Saturn’s largest moon, Titan, is a mysterious place; and the more we learn about it, the more surprises it seems to have in store. Aside from being the only body beyond Earth that has a dense, nitrogen-rich atmosphere, it also has methane lakes on its surface and methane clouds in its atmosphere. This hydrological-cycle, where methane is converted from a liquid to a gas and back again, is very similar to the water cycle here on Earth.

Thanks to the NASA/ESA Cassini-Huygens mission, which concluded on September 15th when the craft crashed into Saturn’s atmosphere, we have learned a great deal about this moon in recent years. The latest find, which was made by a team of UCLA planetary scientists and geologists, has to do with Titan’s methane rain storms. Despite being a rare occurrence, these rainstorms can apparently become rather extreme.

The study which details their findings, titled “Regional Patterns of Extreme Precipitation on Titan Consistent with Observed Alluvial Fan Distribution“, recently appeared in the scientific journal Nature Geoscience. Led by Saun P. Faulk, a graduate student at UCLA’s Department of Earth, Planetary, and Space Sciences, the team conducted simulations of Titan’s rainfall to determine how extreme weather events have shaped the moon’s surface.

Image of Titan’s atmosphere, snapped by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute

What they found was that the extreme methane rainstorms may imprint the moon’s icy surface in much the same way that extreme rainstorms shape Earth’s rocky surface. On Earth, intense rainstorms play an important role in geological evolution. When rainfall is heavy enough, storms can trigger large flows of water that transport sediment into low lands, where it forms cone-shaped features known as alluvial fans.

During it’s mission, the Cassini orbiter found evidence of similar features on Titan using its radar instrument, which suggested that Titan’s surface could be affected by intense rainfall. While these fans are a new discovery, scientists have been studying the surface of Titan ever since Cassini first reached the Saturn system in 2006. In that time, they have noted several interesting features.

These included the vast sand dunes that dominate Titan’s lower latitudes and the methane lakes and seas that dominate it’s higher latitudes – particularly around the  northern polar region. The seas – Kraken Mare, Ligeia Mare, and Punga Mare – measure hundreds of km across and up to several hundred meters deep, and are fed by branching, river-like channels. There are also many smaller, shallower lakes that have rounded edges and steep walls, and are generally found in flat areas.

In this case, the UCLA scientists found that the alluvial fans are predominantly located between 50 and 80 degrees latitude. This puts them close to the center of the northern and southern hemispheres, though slightly closer to the poles than the equator. To test how Titan’s own rainstorms could cause these features, the UCLA team relied on computer simulations of Titan’s hydrological cycle.

False-color mosaic of Titan’s northern lakes, made from infrared data collected by NASA’s Cassini spacecraft. Credit: NASA

What they found was that while rain mostly accumulates near the poles – where Titan’s major lakes and seas are located – the most intense rainstorms occur near 60 degrees latitude. This corresponds to the region where alluvial fans are most heavily concentrated, and indicates that when Titan does experience rainfall, it is quite extreme – like a seasonal monsoon-like downpour.

As Jonathan Mitchell – a UCLA associate professor of planetary science and a senior author of the study – indicated, this is not dissimilar to some extreme weather events that were recently experienced here on Earth. “The most intense methane storms in our climate model dump at least a foot of rain a day, which comes close to what we saw in Houston from Hurricane Harvey this summer,” he said.

The team also found that on Titan, methane rainstorms are rather rare, occurring less than once per Titan year – which works out to 29 and a half Earth years. But according to Mitchell, who is also the principal investigator of UCLA’s Titan climate modeling research group, this is more often than they were expecting. “I would have thought these would be once-a-millennium events, if even that,” he said. “So this is quite a surprise.”

In the past, climate models of Titan have suggested that liquid methane generally concentrates closer to the poles. But no previous study has investigated how precipitation might cause sediment transport and erosion, or shown how this would account for various features observed on the surface. As a result, this study also suggests that regional variations in surface features could be caused by regional variations in precipitation.

On top of that, this study is an indication that Earth and Titan have even more in common than previously thought. On Earth, contrasts in temperature are what lead to intense seasonal weather events. In North America, tornadoes occur during the early to late Spring, while blizzards occur during the winter. Meanwhile, temperature variations in the Atlantic ocean are what lead to hurricanes forming between the summer and fall.

Similarly, it appears that on Titan, serious variations in temperature and moisture are what triggers extreme weather. When cooler, wetter air from the higher latitudes interacts with warmer, drier air from the lower latitudes, intense rainstorms result. These findings are also significant when it comes to other bodies in our Solar System that  have alluvial fans on them – such as Mars.

In the end, understanding the relationship between precipitation and planetary surfaces could lead to new insights about the impact climate change has on Earth and the other planets. Such knowledge would also go a long way towards helping us mitigate the effects it is having here on Earth, where the changes are only unnatural, but also sudden and very hazardous.

And who knows? Someday, it could even help us to alter the environments on other planets and bodies, thus making them more suitable for long-term human settlement (aka. terraforming)!

Further Reading: UCLA, Nature

Storms And Lakes On Titan Revealed By Computer Modeling

[/caption]

Thanks to the Cassini mission and the Huygens probe, we’ve glimpsed a wet world when science took a look at Saturn’s moon, Titan. Its atmosphere is rich in methane and its average temperature is about -300 degrees Fahrenheit (about 90 kelvins). Although the chemical composition is different than ours, Titan still has similar features such as clouds, fog, rain and even lakes. However, the origin of these features haven’t really been well explained until now.

Researchers at the California Institute of Technology (Caltech) have been hard at work creating a computer program based on observations made by Cassini imaging and radar that could help explain Titan’s weather patterns and liquid surface deposits. One major oddity was discovered in 2009 when Oded Aharonson, Caltech professor of planetary science, and his team confirmed Titan’s lakes appeared to be gathered around its poles – more predominately in the northern hemisphere than compared to the south – yet that’s not the only curiosity. The areas around the equator were suspected to be dry, but the Huygens probe revealed areas of run-off and four years later researchers observed a storm system delivering moisture. Need more? Then check out the clouds observed by ground-based telescopes… They gather around southern middle and high latitudes during Titan’s southern hemisphere summer season.

“We can watch for years and see almost nothing happen. This is bad news for people trying to understand Titan’s meteorological cycle, as not only do things happen infrequently, but we tend to miss them when they DO happen, because nobody wants to waste time on big telescopes—which you need to study where the clouds are and what is happening to them—looking at things that don’t happen,” explains Mike Brown of the California Institute of Technology (Caltech).

Sure. The researchers have worked hard at creating models that could explain these exotic weather features, but such explanations involve way out theories, such as cryogenic volcanoes that blast out methane vapor to cause clouds. However, the latest computer renderings are much more basic – the principles of atmospheric circulation. “We have a unified explanation for many of the observed features,” says Tapio Schneider, the Frank J. Gilloon Professor of Environmental Science and Engineering. “It doesn’t require cryovolcanoes or anything esoteric.” Schneider, along with Caltech graduate student Sonja Graves, former Caltech graduate student Emily Schaller (PhD ’08), and Mike Brown, the Richard and Barbara Rosenberg Professor and professor of planetary astronomy, have published their findings in the January 5 issue of the journal Nature.

Why is this data set different than its predecessors? According the Schneider, these new simulations were able to reproduce cloud patterns which match factual observations – right down to the distribution of lakes. “Methane tends to collect in lakes around the poles because the sunlight there is weaker on average,” he explains. “Energy from the sun normally evaporates liquid methane on the surface, but since there’s generally less sunlight at the poles, it’s easier for liquid methane there to accumulate into lakes.” Because Titan has an elongated orbit, it’s a bit further away during the northern hemisphere summer allowing for a longer rainy season and thus a stronger accumulation of lakes.

So what about storms? Near the equator, Titan isn’t very exciting – or is it? Originally it was theorized the area was almost desert-like. That’s why when the Huygens probe discovered evidence of run-off, it became apparent that existing models could be wrong. Imagine the surprise when Schaller, Brown, Schneider, and then-postdoctoral scholar Henry Roe discovered storms in this supposedly arid region in 2009! No one could figure it out and the programs did little more than predict a drizzle. With the new model, heavy rains became a possibility. “It rains very rarely at low latitudes,” Schneider says. “But when it rains, it pours.”

So what else makes the new Titan weather computer model even more unique? This time it runs for 135 Titan years and links the methane lakes – and how methane is distributed – to its atmosphere. According to the research, this matches current Titan weather observations and will help to predict what could be seen in coming years. Making testable predictions is “a rare and beautiful opportunity in the planetary sciences,” Schneider says. “In a few years, we’ll know how right or wrong they are.”

“This is just the beginning,” he adds. “We now have a tool to do new science with, and there’s a lot we can do and will do.”

Original Story Source: California Institute of Technology News Release. For Further Reading: Caltech Scientists Discover Storms in the Tropics of Titan.