Even Though it’s an Alien World, Titan’s Canyons Would Look Very Familiar

In this near-infrared mosaic, the sun shines off of the seas on Saturn's moon, Titan. Credit: NASA/JPL-Caltech/University of Arizona/University of Idaho

Titan is tough moon to study, thanks to its incredibly thick and hazy atmosphere. But when astronomers have ben able to sneak a peak beneath its methane clouds, they have spotted some very intriguing features. And some of these, interestingly enough, are reminiscent of geographical features here on Earth. For instance, Titan is the only other body in the Solar System that is known to have a cycle where liquid is exchanged between the surface and the atmosphere.

For example, previous images provided by NASA’s Cassini mission showed indications of steep-sided canyons in the northern polar region that appeared to be filled with liquid hydrocarbons, similar to river valleys here on Earth. And thanks to new data obtained through radar altimetry, these canyons have been shown to be hundreds of meters deep, and have confirmed rivers of liquid methane flowing through them.

This evidence was presented in a new study titled “Liquid-filled canyons on Titan” – which was published in August of 2016 in the journal Geophysical Research Letters. Using data obtained by the Cassini radar altimeter in May 2013, they observed channels in the feature known as Vid Flumina, a drainage network connected to Titan’s second largest hydrocarbon sea in the north, Ligeia Mare.

Saturn's largest moon, Titan, has features that resemble Earth's geology, with deep, steep-sided canyons. Credit: NASA/JPL/Cassini
Saturn’s largest moon, Titan, has features that resemble Earth’s geology, with deep, steep-sided canyons. Credit: NASA/JPL/Cassini

Analysis of this information showed that the channels in this region are steep-sided and measure about 800 m (half a mile) wide and between 244 and 579 meters deep (800 – 1900 feet). The radar echoes also showed strong surface reflections that indicated that these channels are currently filled with liquid. The elevation of this liquid was also consistent with that of Ligeia Mare (within a maring of 0.7 m), which averages about 50 m (164 ft) deep.

This is consistent with the belief that these river channels in area drain into the Ligeia Mare, which is especially interesting since it parallels how deep-canyon river systems empty into lakes here on Earth. And it is yet another example of how the methane-based hydrological cycle on Titan drives the formation and evolution of the moon’s features, and in ways that are strikingly similar to the water cycle here on Earth.

Alex Hayes – an assistant professor of astronomy at Cornell, the Director of the Spacecraft Planetary Imaging Facility (SPIF) and one of the authors on the paper – has conducted seversal studies of Titan’s surface and atmosphere based on radar data provided by Cassini. As he was quoted as saying in a recent article by the Cornell Chronicler:

“Earth is warm and rocky, with rivers of water, while Titan is cold and icy, with rivers of methane. And yet it’s remarkable that we find such similar features on both worlds. The canyons found in Titan’s north are even more surprising, as we have no idea how they formed. Their narrow width and depth imply rapid erosion, as sea levels rise and fall in the nearby sea. This brings up a host of questions, such as where did all the eroded material go?”

The northern polar area of Titan and Vid Flumina drainage basin. (left) On top of the image, the Ligeia Mare; in the lower right the North Kraken Mare; the two seas are connected each other by a labyrinth of channels. On the left, near the North pole, the Punga Mare. Red arrows indicate the position of the two flumina significant for this work. At the end of its mission (15 September 2017) the Cassini RADAR in its imaging mode (SAR+ HiSAR) will have covered a total area of 67% of the surface of Titan [Hayes, 2016]. Map credits: R. L. Kirk. (right) Highlighted in yellow are the half-power altimetric footprints within the Vid Flumina drainage basin and the Xanthus Flumen course for which specular reflections occurred. At 1400?km of spacecraft altitude, the Cassini antenna 0.35° central beam produces footprints of about 8.5?km in diameter (diameter of yellow circles). Credit: NASA/JPL
Cassini image of the northern polar area of Titan and Vid Flumina drainage basin, showing Ligeia Mare (left) and the Vid Flumina drainage basin (right). Credit: R.L. Kirk/NASA/JPL
A good question indeed, since it raises some interesting possibilities. Essentially, the features observed by Cassini are just part of Titan’s northern polar region, which is covered by large standing bodies of liquid methane – the largest of these being Kraken Mare, Ligeia Mare and Punga Mare. In this respect, the region is similar to glacially eroded fjords on Earth.

However, conditions on Titan do not allow for the presence of glaciers, which rules out the likelihood that retreating sheets of ice could have carved these canyons. So this naturally begs the question, what geological forces created this region? The team concluded that there were only two likely possibilities – which included changes in the elevation of the rivers, or tectonic activity in the area.

Ultimately, they favored a model where the variation in surface elevation of liquid drove the formation of the canyons – though they acknowledge that both tectonic forces and sea level variations played a role. As Valerio Poggiali, an associate member of the Cassini RADAR Science Team at the Sapienza University of Rome and the lead author of the paper, told Universe Today via email:

“What the canyons on Titan really mean is that in the past sea level was lower and so erosion and canyon formation could take place. Subsequently sea level has risen and backfilled the canyons. This presumably takes place over multiple cycles, eroding when sea level is lower, depositing some when it is higher until we get the canyons we see today. So, what it means is that sea level has likely changed in the geological past and the canyons are recording that change for us.”

Titan's Ligeia Mare. Credit: NASA/JPL/USGS
Titan’s second largest methane lake, Ligeia Mare. Credit: NASA/JPL/USGS

In this respect, there are many more Earth examples to choose from, all of which are mentioned in the study:

“Examples include Lake Powell, a reservoir on the Colorado River that was created by the Glen Canyon Dam; the Georges River in New South Wales, Australia; and the Nile River gorge, which formed as the Mediterranean Sea dried up during the late Miocene. Rising liquid levels in the geologically recent past led to the flooding of these valleys, with morphologies similar to those observed at Vid Flumina.”

Understanding the processes that led to these formations is crucial to understanding the current state of Titan’s geomorphology. And this study is significant in that it is the first to conclude that the rivers in the Vid Flumina region were deep canyons. In the future, the research team hopes to examine other channels on Titan that were observed by Cassini to test their theories.

Once again, our exploration of the Solar System has shown us just how weird and wonderful it truly is. In addition to all its celestial bodies having their own particular quirks, they still have a lot in common with Earth. By the time the Cassini mission is complete (Sept. 15th, 2017), it will have surveyed 67% the surface of Titan with its RADAR imaging instrument. Who knows what other “Earth-like” features it will notice before then?

Further Reading: Geophysical Research Letters

Life On Titan Possible Without Water

In this near-infrared mosaic, the sun shines off of the seas on Saturn's moon, Titan. Credit: NASA/JPL-Caltech/University of Arizona/University of Idaho

Saturn’s largest moon Titan is a truly fascinating place. Aside from Earth, it is the only place in the Solar System where rainfall occurs and there are active exchanges between liquids on the surface and fog in the atmosphere – albeit with methane instead of water. It’s atmospheric pressure is also comparable to Earth’s, and it is the only other body in the Solar System that has a dense atmosphere that is nitrogen-rich.

For some time, astronomers and planetary scientists have speculated that Titan might also have the prebiotic conditions necessary for life. Others, meanwhile, have argued that the absence of water on the surface rules out the possibility of life existing there. But according to a recent study  produced by a research team from Cornell University, the conditions on Titan’s surface might support the formation of life without the need for water.

When it comes to searching for life beyond Earth, scientists focus on targets that possess the necessary ingredients for life as we know it – i.e. heat, a viable atmosphere, and water. This is essentially the “low-hanging fruit” approach, where we search for conditions resembling those here on Earth. Titan – which is very cold, quite distant from our Sun, and has a thick, hazy atmosphere – does not seem like a viable candidate, given these criteria.

Diagram of the internal structure of Titan according to the fully differentiated dense-ocean model. Credit: Wikipedia Commons/Kelvinsong
Diagram of the internal structure of Titan according to the fully differentiated dense-ocean model. Credit: Wikipedia Commons/Kelvinsong

However, according to the Cornell research team – which is led by Dr. Martin Rahm – Titan presents an opportunity to see how life could emerge under different conditions, one which are much colder than Earth and don’t involve water.

Their study – titled “Polymorphism and electronic structure of polyimine and its potential significance for prebiotic chemistry on Titan” – appeared recently in the Proceedings of the National Academy of Sciences (PNAS). In it, Rahm and his colleagues examined the role that hydrogen cyanide, which is believed to be central to the origin of life question, may play in Titan’s atmosphere.

Previous experiments have shown that hydrogen cyanide (HCN) molecules can link together to form polyimine, a polymer that can serve as a precursor to amino acids and nucleic acids (the basis for protein cells and DNA). Previous surveys have also shown that hydrogen cyanide is the most abundant hydrogen-containing molecule in Titan’s atmosphere.

As Professor Lunine – the David C. Duncan Professor in the Physical Sciences and Director of the Cornell Center for Astrophysics and Planetary Science and co-author of the study – told Universe Today via email: “Organic molecules, liquid lakes and seas (but of methane, not water) and some amount of solar energy reaches the surface. So this suggests the possibility of an environment that might host an exotic form of life.”

What other surprises may be found beneath Titan's thick haze and clouds? (NASA/JPL/SSI/J. Major)
Titan’s thick, hazy atmosphere may conceal clues as to the possibility of life-giving conditions on its surface. Credit: NASA/JPL/SSI/J. Major

Using quantum mechanical calculations, the Cornell team showed that polyimine has electronic and structural properties that could facilitate prebiotic chemistry under very cold conditions. These involve the ability to absorb a wide spectrum of light, which is predicted to occur in a window of relative transparency in Titan’s atmosphere.

Another is the fact that polyimine has a flexible backbone, and can therefore take on many different structures (aka. polymorphs). These range from flat sheets to complex coiled structures, which are relatively close in energy. Some of these structures, according to the team, could work to accelerate prebiotic chemical reactions, or even form structures that could act as hosts for them.

“Polyimine can form sheets,” said Lunine, “which like clays might serve as a catalytic surface for prebiotic reactions. We also find the polyimine absorbs sunlight where Titan’s atmosphere is quite transparent, which might help to energize reactions.”

In short, the presence of polyimine could mean that Titan’s surface gets the energy its needs to drive photochemical reactions necessary for the creation of organic life, and that it could even assist in the development of that life. But of course, no evidence has been found that polyimine has been produced on the surface of Titan, which means that these research findings are still academic at this point.

On the left is TALISE (Titan Lake In-situ Sampling Propelled Explorer), the ESA proposal. This would have it's own propulsion, in the form of paddlewheels. Credit: bisbos.com
Proposed missions to Titan have included (from left to right) the TALISE (Titan Lake In-situ Sampling Propelled Explorer) and NASA’s Titan Mare Explorer. Credit: bisbos.com

However, Lunine and his team indicate that hydrogen cyanide may very well have lead to the creation of polyimine on Titan, and that it might have simply escaped detection because of Titan’s murky atmosphere. They also added that future missions to Titan might be able to look for signs of the polymer, as part of ongoing research into the possibility of exotic life emerging in other parts of the Solar System.

“We would need an advanced payload on the surface to sample and search for polyimines,” answered Lunine, “or possibly by a next generation spectrometer from orbit. Both of these are “beyond Cassini”, that is, the next generation of missions.”

Perhaps when Juno is finished surveying Jupiter’s atmosphere in two years time, NASA might consider retasking it for a flyby of Titan? After all, Juno was specifically designed to peer beneath a veil of thick clouds. They don’t come much thicker than on Titan!

Further Reading: PNAS

How Do We Terraform Saturn’s Moons?

The moons of Saturn, from left to right: Mimas, Enceladus, Tethys, Dione, Rhea; Titan in the background; Iapetus (top) and irregularly shaped Hyperion (bottom). Some small moons are also shown. All to scale. Credit: NASA/JPL/Space Science Institute

Continuing with our “Definitive Guide to Terraforming“, Universe Today is happy to present our guide to terraforming Saturn’s Moons. Beyond the inner Solar System and the Jovian Moons, Saturn has numerous satellites that could be transformed. But should they be?

Around the distant gas giant Saturn lies a system of rings and moons that is unrivaled in terms of beauty. Within this system, there is also enough resources that if humanity were to harness them – i.e. if the issues of transport and infrastructure could be addressed – we would be living in an age a post-scarcity. But on top of that, many of these moons might even be suited to terraforming, where they would be transformed to accommodate human settlers.

As with the case for terraforming Jupiter’s moons, or the terrestrial planets of Mars and Venus, doing so presents many advantages and challenges. At the same time, it presents many moral and ethical dilemmas. And between all of that, terraforming Saturn’s moons would require a massive commitment in time, energy and resources, not to mention reliance on some advanced technologies (some of which haven’t been invented yet).

Continue reading “How Do We Terraform Saturn’s Moons?”