Researchers Are Building a Simulated Moon/Mars Research Station Deep Underground

These images show the first laboratory in the Bio-SPHERE project. The medical lab is located 1 km under the surface, near one of the UK's deepest mine sites. Image Credit: Dr. Alexandra Iordachescu/University of Birmingham.

In the early days of spaceflight, just getting a satellite into Earth’s orbit was an accomplishment. In our era, landing rovers on other planets and bringing samples home from asteroids is the cutting edge. But the next frontier is rapidly approaching, when astronauts will stay for long periods of time on the Moon and hopefully Mars.

But before we can send people to those dangerous environments, the Artemis partner space agencies have to know how to keep them safe. An important part of that is simulating the conditions on the Moon and Mars.

Continue reading “Researchers Are Building a Simulated Moon/Mars Research Station Deep Underground”

How Would We Do Surgery in Space?

Virtually rendered cutaway view of a postulated traumapod surgical module. Multiple layers of thermal and radiation shielding are visible. A four?armed surgical robot is situated within the module. The patient is tethered to the operating table, while the assistant, using a touchscreen console, is tethered to the module structure via a movable chair. Illustration by T. Trapp (https://www.planvis.co.uk) CC BY-SA 4.0

Any mission to Mars requires deeper planning than missions to the ISS or the Moon. Based purely on the length of the mission, contingencies branch outwards in complex logistical pathways. What if there’s an accident? What if someone’s appendix bursts?

And what if surgery is needed?

Continue reading “How Would We Do Surgery in Space?”

Cancer Seems to Have Trouble Spreading in Microgravity

The International Space Station (ISS), seen here with Earth as a backdrop. Credit: NASA
The International Space Station (ISS), seen here with Earth as a backdrop. Credit: NASA

There are a number of health risks that come with going to space. Aside from the increased exposure to solar radiation and cosmic rays, there are the notable effects that microgravity can have on human physiology. As Scott Kelly can attest, these go beyond muscle and bone degeneration and include diminished organ function, eyesight, and even changes at the genetic level.

Interestingly enough, there are also a number of potential medical benefits to microgravity. Since 2014, Dr. Joshua Choi, a senior lecturer in biomedical engineering at the University of Technology Sydney, has been investigating how microgravity affects medicine and cells in the human body. Early next year, he and his research team will be traveling to the ISS to test a new method for treating cancer that relies on microgravity.

Continue reading “Cancer Seems to Have Trouble Spreading in Microgravity”

Engineering Students Develop a Super “Space Stethoscope”

Making medical diagnoses aboard Space Station can be a tricky business (Image: NASA)

Even though astronauts receive some general medical training in preparation for a stay aboard the ISS, most of them still aren’t medical professionals by any means — and with the inherent difficulties of microgravity and the relatively noisy environment inside the Station, even a simple diagnostic task like listening to a heartbeat can be a challenge.

That’s why engineering students at Johns Hopkins University have developed a special “out of this world” space stethoscope designed to work well while in orbit… as well as down here on Earth.

Space is serene because no air means no sound. But inside the average spacecraft, with its whirring fans, humming computers and buzzing instruments, it can be as raucous as a party filled with laughing, talking people.

“Imagine trying to get a clear stethoscope signal in an environment like that, where the ambient noise contaminates the faint heart signal. That is the problem we set out to solve,” said Elyse Edwards, a senior from Issaquah, Wash., who teamed up on the project with fellow seniors Noah Dennis, a senior from New York City, and Shin Shin Cheng, from Sibu, Sarawak, Malaysia.

Components for a space stethoscope (Photo: Will Kirk/homewoodphoto.jhu.edu)
Components for a space stethoscope (Photo: Will Kirk/homewoodphoto.jhu.edu)

The students worked under the guidance of James West, a Johns Hopkins research professor in electrical and computer engineering and co-inventor of the electret microphone used in telephones and in almost 90 percent of the more than two billion microphones produced today.

Together, they developed a stethoscope that uses both electronic and mechanical strategies to help the device’s internal microphone pick up sounds that are clear and discernible – even in the noisy spacecraft, and even when the device is not placed perfectly correctly on the astronaut’s body.

“Considering that during long space missions, there is a pretty good chance an actual doctor won’t be on board, we thought it was important that the stethoscope did its job well, even when an amateur was the one using it,” Dennis said.

The device also includes many other performance-enhancing improvements, including low power consumption, rechargeable batteries, mechanical exclusion of ambient noise and a suction cup, so that it sticks firmly onto the patient’s chest, says Cheng.

Though developed for NASA’s use in outer space, this improved stethoscope could also be put to use here on Earth in combat situations, where ambient noise is abundant, and in developing countries, where medical care conditions are a bit more primitive.

West also plans to use the device to record infants’ heart and lung sounds in developing countries as part of a project that will attempt to develop a stethoscope that knows how to identify the typical wheezing and crackling breath sounds associated with common diseases.

Read more on the JHU press release here.

Source: Johns Hopkins University