Dinosaur Killing Asteroid hit Earth in Exactly the Wrong Spot

Sixty-six million years ago, an asteroid struck Earth in what is now the Yucatan Peninsula in southern Mexico. This event, known as the Chicxulub asteroid impact, measured 9 km in diameter and caused extreme global cooling and drought. This led to a mass extinction, which not only claimed the lives of the dinosaurs, but also wiped out about 75% of all land and sea animals on Earth.

However, had this asteroid impacted somewhere else on the planet, things could have turned out very differently. According to a new study produced by a team of Japanese researchers, the destruction caused by this asteroid was due in large part to where it impacted. Had the Chicxulub asteroid landed somewhere else on the planet, they argue, the fallout would not have been nearly as severe.

The study, which recently appeared in the journal Scientific Reportsis titled “Site of asteroid impact changed the history of life on Earth: the low probability of mass extinctionand was conducted by Kunio Kaiho and Naga Oshima of Tohoku University and the Meteorological Research Institute, respectively. For the sake of their study, the pair considered how geological conditions in the Yucatan region were intrinsic to mass extinction that happened 66 million years ago.

Satellite views of the Chicxulub impact site in the Yucutan Peninsula, southern Mexico. Image credit: NASA/JPL

Dr. Kaiho and Dr. Oshima began by considering recent studies that have shown how the Chicxulub impact heated the hydrocarbon and sulfur content of rocks in the region. This is what led to the formation of stratospheric soot and sulfate aerosols which caused the extreme global cooling and drought that followed. As they state in their study, it was this (not the impact and the detritus it threw up alone) that ensured the mass extinction that followed:

“Blocking of sunlight by dust and sulfate aerosols ejected from the rocks at the site of the impact (impact target rocks) was proposed as a mechanism to explain how the physical processes of the impact drove the extinction; these effects are short-lived and therefore could not have driven the extinction. However, small fractions of stratospheric sulfate (SO4) aerosols were also produced, which may have contributed to the cooling of the Earth’s surface.

Another issue they considered was the source of the soot aerosols, which previous research has indicated were quite prevalent in the stratosphere during the Cretaceous/Paleogene (K–Pg) boundary (ca. 65 million years ago). This soot is believed to coincide with the asteroid impact since microfossil and fossil pollen studies of this period also indicate the presence of iridium, which has been traced to the Chicxulub asteroid. 

Previously, this soot was believed to be the result of wildfires that raged in the Yucatan as a result of the asteroid impact. However, Kaiho and Oshima determined that these fires could not have resulted in stratospheric soot; instead positing that they could only be produced by the burning and ejecting of hyrdocarbon material from rocks in the impact target area.

When an asteroid struck the Yucatan region about 66 million years ago, it wiped out the dinosaurs, and most of life on Earth. If it had hit elsewhere, the dinosaurs might well have survived. Credit: NASA/Don Davis
When an asteroid struck the Yucatan region about 66 million years ago, it wiped out the dinosaurs, and most of life on Earth. If it had hit elsewhere, the dinosaurs might well have survived. Credit: NASA/Don Davis

The presence of these hydrocarbons in the rocks indicate the presence of both oil and coal, but also plenty of carbonate minerals. Here too, the geology of the Yucatan was key, since the larger geological formation known as the Yucatan Platform is known to be composed of carbonate and soluble rocks – particularly limestone, dolomite and evaporites.

To test just how important the local geology was to the mass extinction that followed, Kaiho and Oshima conducted a computer simulation that took into account where the asteroid struck and how much aerosols and soot would be produced by an impact. Ultimately, they found that the resulting ejecta would have been sufficient to trigger global cooling and drought; and hence, an Extinction Level Event (ELE).

This sulfur and carbon-rich geology, however, is not something the Yucatan Peninsula shares with most regions on the planet. As they state in their study:

“Here we show that the probability of significant global cooling, mass extinction, and the subsequent appearance of mammals was quite low after an asteroid impact on the Earth’s surface. This significant event could have occurred if the asteroid hit the hydrocarbon-rich areas occupying approximately 13% of the Earth’s surface. The site of asteroid impact, therefore, changed the history of life on Earth.”

Mass extinction only occurred when the asteroid having 9-km diameter hit the orange areas. Credit: Kunio Kaiho

Basically, Kaiho and Oshima determined that 87% of Earth would not have been able to produce enough sulfate aerosols and soot to trigger a mass extinction. So if the Chicxulub asteroid struck just about anywhere else on the planet, the dinosaurs and most of the world’s animals would have likely survived, and the resulting macroevolution of mammals probably would not have taken place.

In short, modern hominids may very well owe their existence to the fact that the Chicxulub asteroid landed where it did. Granted, the majority of life in the Cretaceous/Paleogene (K–Pg) was wiped out as a result, but ancient mammals and their progeny appear to have lucked out. The study is therefore immensely significant in terms of our understanding of how asteroid impacts affect climatological and biological evolution.

It is also significant when it comes to anticipating future impacts and how they might affect our planet. Whereas a large impact in a sulfur and carbon-rich geological region could lead to another mass extinction, an impact anywhere else could very well be containable. Still, this should not prevent us from developing appropriate countermeasures to ensure that large impacts don’t happen at all!

Further Reading: Science Reports

Is Planet X Linked to Mass Extinctions?

Artist's impression of Planet Nine as an ice giant eclipsing the central Milky Way, with a star-like Sun in the distance. Neptune's orbit is shown as a small ellipse around the Sun. The sky view and appearance are based on the conjectures of its co-proposer, Mike Brown.
Artist’s impression of Planet Nine as an ice giant eclipsing the central Milky Way, with a star-like Sun in the distance. Neptune’s orbit is shown as a small ellipse around the Sun. The sky view and appearance are based on the conjectures of its co-proposer, Mike Brown. Credit: Tom Ruen with background from the Milky Way, an ESO image.

Planet Nine, the massive orb proposed to explain the clustered orbits of a half dozen remote Kuiper Belt asteroids, may have a darker side. Periodic mass extinctions on Earth, as indicated in the global fossil record, could be linked to the hypothetical planet according to research published by Daniel Whitmire, a retired professor of astrophysics and faculty member of the University of Arkansas Department of Mathematical Sciences.

Artist's impression of a major impact event: A collision between Earth and an asteroid a few kilometres in diameter would release as much energy as several million nuclear weapons detonating.
Artist’s impression of  a collision between Earth and and a comet or asteroid a few kilometers in diameter would release as much energy as several million nuclear weapons detonating and set off a mass extinction event.

Planet Nine is estimated to be 10 times more massive than Earth and currently orbiting about 1,000 times farther away from the Sun. Astronomers have been searching for a potential large planet — for years called “Planet X” — that might be implicated in a handful of major mass extinctions over the past 500 million years. During those times, between 50 and more than 90% of species on Earth perished in a geological heartbeat. The worst, dubbed the Permian-Triassic event or the Great Dying, occurred 250 million years ago and saw the disappearance of more than 90% of the planet’s life in a geological heartbeat.

Whitmire and his colleague, John Matese, first published research on the connection between Planet X and mass extinctions in the journal Nature in 1985 while working as astrophysicists at the University of Louisiana at Lafayette. They proposed that perturbations from a 10th planet (Pluto was considered a planet back then) could fling a shower of comets from the Kuiper Belt beyond Neptune in Earth’s direction every 28 million years in sync with recorded mass extinctions.

Two other ideas also proposed at the time they wrote their paper — a sister star to the Sun and vertical oscillations of the Sun as it orbits the galaxy — have since been ruled out because the timing is inconsistent with the extinction record. Only Planet X remained as a viable theory, and it’s now gaining renewed attention.


Neil deGrasse Tyson explains precession and Mercury’s orbit

Whitmire and Matese proposed that as Planet X orbits the Sun, its tilted orbit slowly rotates, causing the location of its perihelion (closest point to the Sun) to slowly precess or shift position along its orbit instead of remaining in the same place. Every planet precesses, so no surprises here.

This artwork shows a rocky planet being bombarded by comets. Image credit: NASA/JPL-Caltech
This artist’s conception shows a rocky planet being bombarded by comets. Credit: NASA/JPL-Caltech

But location can make a huge difference. The team proposed that Planet X’s slow orbital gyration directs it into the Kuiper Belt approximately every 27 million years, knocking comets into the inner Solar System. The dislodged comets not only smash into the Earth, they also vaporize and break apart in the inner Solar System as they get nearer to the Sun, reducing the amount of sunlight that reaches the Earth. Add it up, and you have a recipe for cyclic destruction.

One thing to keep in mind is that their research led them to conclude that Planet X was only 5 times as massive as Earth and 100 times farther from the Sun. This doesn’t jive with the size and mass particulars for Planet Nine inferred by researchers Konstantin Batygin and Michael E. Brown at Caltech earlier this year, but until someone tracks the real planet down, there’s room for argument.

Comet and asteroid showers are often cited as possible bad guys in extinction episodes. And why not? We have hard evidence of the asteroid impact that sealed the dinosaurs’s fate 65 million years ago and have seen some six impacts at Jupiter since 1994. It’s cosmic billiards out there folks, and the game’s not over.

Questioning the Impact Theory: What Really Killed the Dinosaurs?

About sixty five and a half million years ago, the Earth suffered its largest known cosmic impact. An asteroid or comet nucleus about 10 km in diameter slammed into what is now the Yucatan peninsula of Mexico. It gouged out a crater 180 to 200 km in diameter: nearly twice as large as the prominent crater Copernicus on Earth’s moon. But did this impact really cause the extinction of the dinosaurs and many other forms of life? Many earth scientists are convinced that it did, but some harbor nagging doubts. The doubters have marshaled a growing body of evidence for another culprit; the enormous volcanic eruptions that produced the Deccan Traps formation in India. The skeptics recently presented their case at a meeting of the Geological Society of America in Vancouver, Canada, on October 19.

The dinosaurs are the most well-known victims of the mass extinction event that ended the Cretaceous period. The extinction claimed almost all large vertebrates on land, at sea, or in the air, as well as numerous species of insects, plants, and aquatic invertebrates. At least 75% of all species then existing on Earth vanished in a short span in relation to the geological timescale of millions of years. The disaster is one of five global mass extinction events that paleontologists have identified over the tenure of complex life on Earth.

The hypothesis that the terminal Cretaceous extinction was caused by a cosmic impact has been the most popular explanation of this catastrophe among earth scientists and the public for several decades. It was proposed in 1980 by the father and son team of Luis and Walter Alvarez and their collaborators. The Alvarez team’s main line of evidence that an impact happened was an enrichment of the metal iridium in sediments dating roughly to the end of the Cretaceous. Iridium is rare in Earth’s crust, but common in meteorites. The link between iridium and impacts was first established by studies of the samples returned by the Apollo astronauts from the Moon.

Over the ensuing decades, evidence of an impact accumulated. In 1991, a team of scientists led by Dr. Alan Hildebrand of the Department of Planetary Sciences at Arizona University, published evidence of a gigantic buried impact crater, called Chicxulub, in Mexico. Other investigators found evidence of materials ejected by the impact, including glass spherules in Haiti and Mexico. Supporters of the impact hypothesis believe that vast amounts of dust hurtled into the stratosphere would have plunged the surface of the planet into the darkness and bitter cold of an “impact winter” lasting for at least months, and perhaps decades. Global ecosystems would have collapsed and mass extinction ensued. But, they’ve had a harder time finding evidence for these consequences than for the impact itself.

Doubters of the Alvarez hypothesis don’t question the ‘smoking gun’ evidence that an impact happened near the end of the Cretaceous, but they don’t think it was the main cause of the extinctions. For one thing, inferring the exact time of the impact from its putative geological traces has proved difficult. Dr. Gerta Keller of the Department of Geosciences of Princeton University, a prominent skeptic of the Alvarez hypothesis, has questioned estimates that make the impact and the extinctions simultaneous. Analyzing core samples taken from the Chicxulub crater, and glass spherule containing deposits in northeastern Mexico, she concludes that the Chicxulub impact preceded the mass extinction by 120,000 years and had little consequence for the fossil record of life in the geological formations which she studied. Of the five major mass extinction events in Earth’s history, she noted in a 2011 paper, none other than the terminal Cretaceous event has ever been even approximately associated with an impact. Several other large impact craters besides Chicxulub have been well studied by geologists and none is associated with fossil evidence of extinctions. On the other hand, four of the five major mass extinctions appear to have some connection with volcanic eruptions.

Keller and other Alvarez skeptics look to a major volcanic event that occurred towards the end of the Cretaceous as an alternate primary cause of the extinction. The Deccan Traps formation in central India is a plateau consisting of multiple layers of solidified lava 3500 m thick. Today, it extends over an area larger than all of France. It was once three times that large. It was formed in a series of three volcanic outbursts that may have been among the largest in Earth’s history. At the October conference, Dr. Theirry Adatte of the Institute of Earth Sciences at the University of Lausanne in France presented evidence that the second of these outbursts was by far the largest, and occurred over a period of 250,000 years prior to the end of the Cretaceous. During this period, 80% of the total lava thickness of the Deccan formation was deposited. The eruptions produced lava flows that may be the longest on Earth, extending more than 1500 km.

The blue area indicates the Deccan Traps, a massive remnant of immense volcanic eruptions at the end of the Cretaceous period that may have contributed to the terminal Cretaceous extinction. Credit: CamArchGrad, English Wikipedia Project
The blue area indicates the Deccan Traps, a massive remnant of immense volcanic eruptions at the end of the Cretaceous period that may have contributed to the terminal Cretaceous extinction. Credit: CamArchGrad, English Wikipedia Project

To illustrate the likely environmental consequences of such a super-eruption, Adatte invoked the worst volcanic catastrophe in human history. Over eight months from 1783-84 a major eruption in Laki, Iceland, deposited 14.3 square kilometers of lava and emitted an estimated 122 megatons of toxic sulfur dioxide into the atmosphere. About a quarter of the people and half of the livestock in Iceland died. Across Europe the sky was darkened by a pall of haze, and acid rain fell. Europe and America experienced the most severe winter in history and global climate was disrupted for a decade. Millions of people died from the resulting drought and famine. The Laki incident was nonetheless miniscule by comparison with the second Deccan Traps outburst, which produced 1.5 million square kilometers of lava and an estimated 6,500- 17,000 gigatons of sulfur dioxide.

The Deccan Traps eruptions would also have emitted immense quantities of carbon dioxide. Carbon dioxide is a heat trapping greenhouse gas responsible for the oven-like temperatures of the planet Venus. It is released by the burning of fossil fuels and plays a major role in human-caused global warming on Earth. Thus Geller surmised that the Deccan Traps eruptions could have produced both periods of intense cold due to sulfur dioxide haze, and intense heat due to carbon dioxide induced global warming.

At the October conference she presented the results of her studies of geological formations in Tunisia that preserved a high resolution record of climate change during the time of the main pulse of Deccan Traps volcanic activity. Her evidence shows that near the onset of the 250,000 year pulse, there was a ‘hyperthermal’ period of rapid warming that increased ocean temperatures by 3-4 degrees Celsius. She claimed that temperatures remained elevated through the pulse culminating with a second ‘hyperthermal’ warming of the oceans by an additional 4-5 degrees Celsius. This second hyperthermal warming occurred within a 10,000 year period of mega-eruptions, which corresponded with the terminal Cretaceous extinction. The Chicxulub impact occurred during the 250,000 year pulse, but well prior to the extinctions and the hyperthermal event.

The debate over the relative importance of the Chicxulub impact and the Deccan Trap volcanoes in producing the terminal Cretaceous extinction isn’t over. In May of this year, a team headed by Dr. Johan Vellekoop at the Department of Earth Sciences at Ulrecht University in the Netherlands published evidence of a geologically brief episode of cooling which they claim as the first direct evidence of an “impact winter”. Whatever the outcome of the debate, it seems clear that the end of the Cretaceous, with its super-volcanoes and giant impacts, was not a good time for life on Earth.

References and Further Reading:
J. Coffey (2009) The Asteroid that Killed the Dinosaurs, Universe Today.

I. O’Neill (2009) (Were the Dinosaurs Really Wiped Out by an Asteroid? Possibly Not (Update), Universe Today.

G. Keller (2012), The Cretaceous-Tertiary Mass Extinction, Chicxulub Impact, and Deccan Volcanism, Earth and Life, J.A. Talent, Editor, Springer Science and Business media.

E. Klemetti (2013) Local and global impacts of the 1783-84 Laki eruption in Iceland, Wired Science Blogs/Eruptions

J. Vellekoop et al. (2014) Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary, Proceedings of the National Academy of Sciences USA, 111(2) p. 7537-7541.

Astronomy Without A Telescope – Say No To Mass Extinction

[/caption]

You may have heard that there is an 86 per cent chance that in a mere million years or so Gliese 710 will drift close enough to the solar system to perturb the Oort cloud and perhaps send a rain of comets down into the inner solar system. 

Also, you have probably heard that there are hints of a certain periodicity in mass extinction events, perhaps linked to the solar system moving through the denser parts of the galactic disk, increasing the probability of similar close encounters. 

So, the big bad is coming… sometime. It might just be a stray asteroid that’s in the wrong place at the wrong time and have little to do with what’s happening outside the solar system. In any case, we need to stay calm and carry on – and maybe print the following handy survival tips on a fridge magnet.  

Idealised fridge magnet - for us or whoever comes next.

Immediate action: Fund sky surveys.

The Spaceguard Survey is underway aiming to identify near Earth objects down to the size of 140 meters. At present the survey might be finished in ten or fifteen years and it completely missed two small objects which are thought to have hit Earth in 2002 with impact energies approaching half a kiloton. 

Uh, anyone think we could be doing more in this space? 

Medium term action (0 – 10 years): Evacuate the area 

The 2010 National Academy of Science (NAS) report uses the strange term civil defence, but really it just means run for your life (i.e. evacuate the anticipated impact site). City destroyers in the 140 meter plus range may only hit Earth every 30,000 years or so, but it doesn’t hurt to be ready. 

Mass extinction objects in the ten kilometer range may only come every 65 million years or so. If it’s one of these… bummer. 

Long-term action (10 years plus): Call Roger Ramjet   

If we do have around 10 years notice, there’s maybe enough time to launch some of the nifty technology solutions we have at least developed on paper. Gravity tugs and mirror bees and various other deflection devices are recommended to deflect objects threatening to pass through a gravitational keyhole and shift onto a collision course next time around. 

If the object is already on collision course, no-one’s ruling out ‘instantaneous force’ (IF) options, which are either crashing something into it (‘kinetic impact’) or just nuking it – although the NAS report notes a 500% uncertainty about the possible trajectory change resulting from an IF. Ideally, a ‘full deflection campaign’ involves an IF primary deflection followed by subsequent shepherding of one or more fragments onto a safer trajectory via your preferred deflection device.

And look, if it does all goes bad at least the next order of intelligent Earthlings might dig up all these fridge magnets with mysterious symbols printed on them and be able to figure out where we went wrong. My money is on the birds. 

Recommended reading: 

The Association of Space Explorers’ International Panel (chaired by Russell ‘Rusty’ Schweickart) report. Asteroid Threats: A Call For Global Response. 

 National Research Council report. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies. Final Report.