When astronauts land on Mars someday, they might have to live in lava caves or lava tubes to survive the harsh radiation that rains down on the Martian surface every second. But which caves could offer them the best chance of survival? This is what a recent study presented at the 55th Lunar and Planetary Science Conference hopes to address as Dr. Anatoliy P. Vidmachenko from the National University of Life and Environmental Sciences of Ukraine investigated where, how, and why lava tubes and lava caves could aid future Mars astronauts regarding their survival. This study holds the potential to help scientists and engineers help mitigate risks for future Mars astronauts and what steps that need to be taken to make that a reality.
Continue reading “Determining the Safest Martian Caves for Future Astronauts”Aerocapture is a Free Lunch in Space Exploration
This article was updated on 11/28/23
When spacecraft return to Earth, they don’t need to shed all their velocity by firing retro-rockets. Instead, they use the atmosphere as a brake to slow down for a soft landing. Every planet in the Solar System except Mercury has enough of an atmosphere to allow aerocapture maneuvers, and could allow high-speed exploration missions. A new paper looks at the different worlds and how a spacecraft must fly to take advantage of this “free lunch” to slow down at the destination.
Continue reading “Aerocapture is a Free Lunch in Space Exploration”Europe’s ExoMars Rover Will Likely Miss This Year’s Launch Window Because of Russia’s Invasion of Ukraine
As countries around the world respond to Russia’s invasion of Ukraine with sanctions aimed at crippling Moscow and Vladimir Putin, the global cooperation in space exploration that has been forged over the past 30-plus years will certainly be impacted.
Continue reading “Europe’s ExoMars Rover Will Likely Miss This Year’s Launch Window Because of Russia’s Invasion of Ukraine”UAE’s Mars Hope Team Publishes ‘Mars Atlas’
The United Arab Emirates Space Agency releases a unique comprehensive Mars Atlas of the Red Planet.
You have never seen Mars like this. Recently, the New York University of Abu Dhabi (NYUAD) released an 88-page look at Red Planet, dubbed The Atlas of Mars. The Atlas is free online, and uses spectacular imagery taken from the United Arab Emirates Space Agency’s ambitious Mars Hope mission.
Continue reading “UAE’s Mars Hope Team Publishes ‘Mars Atlas’”China’s Mars-bound Tianwen-1 Takes a Selfie
The CNSA (Chinese National Space Agency) has released an image of its Tianwen-1 spacecraft to coincide with the National Day and Mid-Autumn Festival. The spacecraft is on its way to Mars, and if the landing is successful, China will be only the third nation to successfully land a spacecraft on the planet.
Continue reading “China’s Mars-bound Tianwen-1 Takes a Selfie”Scientists Search for Ancient Fossils in Australia, Practicing the Techniques They’ll Use on Mars
NASA’s Mars 2020 Rover is heading to Mars soon to look for fossils. The ESA/Roscosmos ExoMars rover is heading to Mars in the same time-frame to carry out its own investigations into Martian habitability. To meet their mission objectives, the scientists working the missions will need to look at a lot of rocks and uncover and understand the clues those rocks hold.
To help those scientists prepare for the daunting task of analyzing and understanding Martian rocks from 160 million km (100 million miles) away, they’ve gone on a field trip to Australia to study stromatolites.
Continue reading “Scientists Search for Ancient Fossils in Australia, Practicing the Techniques They’ll Use on Mars”Success! NASA Confirms the Mole is Working Again.
After months of setbacks, NASA says that the InSight Lander’s Mole is working again.
InSight landed on Mars on Nov. 26 2018 in Elysium Planitia. Its mission is to study the interior of the planet, to learn about how Mars and other rocky planets formed. InSight (Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport) is a NASA mission with other partners, including the DLR (German Aerospace Center.)
Continue reading “Success! NASA Confirms the Mole is Working Again.”You Can Use a Live Webcam to Watch NASA Build the Mars 2020 Rover
NASA’s next mission to the surface of Mars is called the 2020 rover (in case you didn’t know already.) It’s planned launch date is July 17th, 2020, and it should land at Jezero Crater on Mars on February 18th 2021. The rover is still under construction at the Jet Propulsion Lab in Pasadena, California.
Continue reading “You Can Use a Live Webcam to Watch NASA Build the Mars 2020 Rover”Engineers are Still Troubleshooting Why Mars InSight’s Mole is Stuck and Won’t Go Any Deeper
NASA’s Mars InSight Lander was always a bit of a tricky endeavour. The stationary lander has one chance to get things right, since it can’t move. While initially the mission went well, and the landing site looked good, the Mole is having trouble penetrating deep enough to fulfill its mission.
Continue reading “Engineers are Still Troubleshooting Why Mars InSight’s Mole is Stuck and Won’t Go Any Deeper”Interesting Prospects for Comet A1 Siding Spring Versus the Martian Atmosphere
It may be the chance of a lifetime for planetary science.
This October, a comet will brush past a planet, giving scientists a chance to study how it possibly interacts with a planetary atmosphere.
The comet is C/2013 A1 Siding Spring, and the planet in question Mars. And although an impact of the comet on the surface of the Red Planet has long been ruled out, a paper in the May 2014 issue of Icarus raises the interesting possibility of possible interactions of the coma of A1 Siding Spring and the tenuous atmosphere of Mars. The study comes out of the Department of Planetary Sciences at the University of Arizona, the Belgian Institute for Space Aeronomy, the Institut de Planétologie et d’Astrophysique de Grenoble at the Université J. Fourier in France, and the Cooperative Institute for Research in Environmental Sciences at the University of Colorado in Boulder.
For the study, researchers considered how active Comet A1 Siding Spring may be at the time of closest approach on October 19th, 2014.
Discovered early last year by Robert McNaught from the Siding Spring Observatory in Australia, Comet A1 Siding Spring created a stir in the astronomical community when it was found that it will pass extremely close to Mars later this year. Further measurements of its orbit have since ruled this possibility out, but its passage will still be a close one, with a nominal passage of 138,000 kilometres from Mars. That’s about one third the distance from Earth to the Moon, and 17 times closer than the nearest recorded passage of a comet to the Earth, Comet D/1770 L1 Lexell in 1780. Mars’ outer moon Deimos has an orbital distance of about 23,500 kilometres.
And although the nucleus will safely pass Mars, the brush with its extended atmosphere might just be detectable by the fleet of spacecraft and rovers in service around Mars. At a distance of 1.4 Astronomical Units (A.U.) from the Sun during the encounter, the vast coma is expected to be comprised primarily of H2O. At an input angle of about 60 degrees, penetration was calculated in the study to impinge down and altitude of 154 kilometres to the topside of the Martian ionosphere, in the middle of the thermosphere.
Such an effect should linger for just over 4 hours, well over the interaction period of Mars’ atmosphere with the coma of just over an hour, centered on 18:30 UT on October 19th, 2014.
What kind of views might missions like HiRISE and MSL get of the comet remains to be seen, although NEOWISE and Hubble are already monitoring the comet for enhanced activity. The Opportunity rover is also still functioning, and Mars Odyssey and ESA’s Mars Express are still in orbit around the Red Planet and sending back data. But perhaps the most interesting possibilities for observations of the event are still en route: India’s Mars Orbiter Mission and NASA’s MAVEN orbiter arrive just before the comet. MAVEN was designed to study the upper atmosphere of Mars, and carries an ion-neutral mass spectrometer (NGIMS) which could yield information on the interaction of the coma with the Martian upper atmosphere and ionosphere. The NGIMS cover is slated for release just two days before the comet encounter. All spacecraft orbiting Mars may feel the increased drag effects of the encounter.
Proposals for using Earth-based assets for further observations of the comet prior to the event in October are still pending. Amateur observers will be able to follow the approach telescopically, as Comet A1 Siding Spring is expected to reach +8th magnitude in October and pass 7’ from Mars in the constellation Ophiuchus as seen from the Earth. Mars just passed opposition last month, but both will be low to the south west at dusk for northern hemisphere observers in October.
It’s also interesting to consider the potential for interactions of the coma with the surfaces of the moons of Mars as well, though the net amount of water vapor expected to be deposited will not be large.
UPDATE: Check out this nifty interactive simulator which includes Comet A1 Siding Springs courtesy of the Solar System Scope:
The H2O coma of A1 Siding Spring is expected to have a radius of 150,000 kilometres when it passes Mars, just a shade over the nominal flyby distance.
“There is a more extended coma made up of H2O dissociation products (such as hydrogen and hydroxide) that extends for ~1,000,000 kilometres,” researcher at the Department of Planetary Sciences at the University of Arizona and lead author on the paper Roger Yelle told Universe Today.
“Essentially, Mars is in the outer reaches of the coma. The main ion tail misses Mars but there will be some ions from the comet that do reach Mars. The dust tail just misses Mars, which is fortunate.”
The paper also notes that significant perturbations of the upper atmosphere of Mars will occur if the cometary production rate is 10^28 s-1 or larger, which corresponds to about 300 kilograms per second.
“The MAVEN spacecraft will make very interesting observations,” Roger Yelle also told Universe Today. “The comet will perturb primarily the upper atmosphere of Mars and MAVEN was designed to study the upper atmosphere of Mars. Also, it’s just such an incredible coincidence that the comet arrives at Mars less than one month after MAVEN does. MAVEN is nominally in its checkout phase then, and the main science phase of the mission was not scheduled to start until November 1st. However, we are reassessing our plans to see what observations we can make. It’s all quite exciting, and we have to balance safety and the desire to make the best science measurements.”
It’s an unprecedented opportunity, that’s for sure… all eyes will be on the planet Mars and Comet A1 Siding Spring on October the 19th!