Space Catapult Startup SpinLaunch has Come Out of Stealth Mode. Space catapults? Yes Please

Of all challenges presented by space exploration – and to be fair, there are many! – one of the greatest is the cost. When it comes right down to it, launching disposable rockets from Earth and getting them to the point where they can achieve escape velocity and reach space is expensive. In addition, these rockets need to be big, powerful, and be able to hold a lot of fuel in order to lift spacecraft or cargo.

It is for this reason that so many efforts in the past few decades have been focused on reducing costs of individual launches. Between reusable rockets and reusable spacecraft (i.e the Space Shuttle), there are plenty of ways to make launch vehicles cheaper. But to the Jonathan Yaney, the founder of SpinLaunch, a real cost-cutting solution is to propel smaller payloads into orbit using a space catapult instead.

The concept of a space catapult is simple, and has been explored at length since the beginning of the Space Age. Also known as a mass driver or coilgun, the concept relies on a set of powerful electromagnetic rails to accelerate spacecraft or payloads to escape velocity and launch them horizontally. Since the 1960s, NASA has been exploring the concept as an alternative to conducting rocket launches.

The Magnetic Levitation (MagLev) System evaluated at NASA’s Marshall Space Flight Center. Credit: NASA

In addition, NASA has been continued to develop this technology through the Marshall Space Flight Center and the Kennedy Space Center. Here, engineers have been working on ways to launch spacecraft horizontally using scramjets on an electrified track or gas-powered sled. A good example of this is the Magnetic Levitation (MagLev) System which uses the same technology as a maglev train to accelerate a small space plane into orbit.

Another variation of the concept involves a centrifuge, where the spacecraft or cargo is accelerated on a circular track until it reaches escape velocity (and then launches). This concept was proposed by Dr. Derek Tidman – a physicists who specialized in electrothermal and electromagnetic acceleration – in the 1990s. Known as the Slingatron, this version of the space catapult is currently being researched by HyperV Technologies.

However, these ideas were never adopted because vast improvements were needed in terms of electromagnetic induction technology in order to achieve the speeds necessary to put heavy payloads into space. But thanks to improvements in high-speed maglev trains, recent attempts to create Hyperloop pods and tracks, and the growth of the commercial aerospace market, the time may be ripe to revisit this concept.

Such is the hope of Jonathan Yaney, an aerospace enthusiast who has a long history of co-founding startups. As he describes himself, Yaney is a “serial entrepreneur” who has spent the past 15 years founding companies in the fields of consulting, IT, construction, and aerospace. Now, he has founded SpinLaunch with the intention of launching satellites into space.

SpinLaunch’s company logo. Credit: SpinLaunch

And while Yaney has been known for being rather recluse, TechCrunch recently secured an exclusive interview and gained access to the company hangar. According to multiple sources that they cite, Yaney and the company he founded are launching a crowdfunding campaign to raise the $30 million in Series A funding to develop the catapult technology. In the course of the interview, Yaney expressed his vision for space exploration as follows:

“Since the dawn of space exploration, rockets have been the only way to access space. Yet in 70 years, the technology has only made small incremental advances. To truly commercialize and industrialize space, we need 10x tech improvement.”

According to a source cited by TechCrunch, SpinLaunch own design would apparently involve a centrifuge that accelerates payloads to speeds of up to 4,828 km/h (3,000 mph). Additionally, the cargo could be equipped with supplemental rockets in order to escape Earth’s atmosphere. By replacing rocket boosters with a kinetic launch system, SpinLaunch’s concept would rely on principles that are similar to those explored by NASA.

But as he went on to explain, the method his company is exploring is different. “SpinLaunch employs a rotational acceleration method, harnessing angular momentum to gradually accelerate the vehicle to hypersonic speeds,” he said. “This approach employs a dramatically lower cost architecture with much lower power.” Utilizing this technology, Yaney estimates that the costs of individual launches could be reduced to $500,000 – essentially, by a factor of 10 to 200.

A lunar base, as imagined by NASA in the 1970s. Credit: NASA

Not much else is known about this startup. According to Bloomberg Financial, little is known about the company or its founder beyond a brief description. However, according to SEC documents cited by TechCrunch, Yaney was able to raise $1 million in equity in 2014 and $2.9 million in 2015 before being $2.2. million dollars in debt by mid-2017 and another $2 million in debt by late 2017.

Luckily, the Hawaii state senate introduced a bill last month that proposed issuing $25 million in bonds to assist SpinLaunch with the construction of its space catapult. Hawaii also hopes to gain construction contracts for the launch system, as part of its commitment to making space accessible. As it states in the bill:

“[T]he department of budget and finance, with the approval of the governor, is authorized to issue special purpose revenue bonds in a total amount not to exceed $25,000,000, in one or more series, for the purpose of assisting SpinLaunch Inc., a Delaware corporation, in financing the costs relating to the planning, design, construction, equipping, acquisition of land, including easements or other interests therein, and other tangible assets for an electrically powered, kinetic launch system to transport small satellites into low Earth orbit.”

In the meantime, Yaney is looking to the public and to several big venture capital firms to raise the revenue he needs to make his vision become a reality. Of course, beyond the issue of financing, there are several technical barriers which still need to be addressed before a space catapult could be realized. The most obvious of these is how to overcome the air resistance produced by Earth’s dense atmosphere.

However, Yaney was optimistic in his interview with TechCrunch, claiming that his company is investigating these and other challenges:

“During the last three years, the core technology has been developed, prototyped, tested and most of the tech risk retired. The remaining challenges are in the construction and associated areas that all very large hardware development and construction projects face.”

There’s no indication of when such a system might be complete, but that’s to be expected at this point. However, with the support of the Hawaiian government and some additional capital, his company is likely to secure its Series A funding and begin moving to the next phase of development. Much like the Hyperloop, this concept may prove to be one of those ideas that keeps advancing because of the people who are willing to make it happen!

And be sure to check out this video about SpinLaunch’s crowdfunding campaign, courtesy of Scott Manley:

Further Reading: TechCrunch

Do We Really Need Rockets to Go to Space?

We’re familiar with rockets, those controlled explosions that carry cargo and fragile humans to space. But are there some non-rocket ways we could get to space?

Want to go space? Get a rocket. Nothing else ever invented can release the tremendous amounts of energy in a controlled way to get you to orbit.

It all comes down to velocity. Right now, you’re standing still on the Earth. If you jump up, you’ll come right back down where you started. But if you had a sideways velocity of 10 meters/second and you jumped up, you’d land downrange a few meters… painfully. And if you were moving 7,800 meters per second sideways – and you were a few hundred kilometers up – you’d just orbit the Earth.

Gaining that kind of velocity takes rockets. These magical science thundertubes are incredibly expensive, inefficient and single-use. Imagine if you had to buy a new car for each commute. Just blasting a single kilogram to orbit typically costs about $10,000. When you buy a trip to space, only a few hundred k goes to the gas. Those millions of dollars mostly go into the cost of the rocket that you’re going to kick to the curb once you’re done with it.

SpaceX is one of the most innovative rocket companies out there. They’re figuring ways to reuse as much of the rocket as they can, slashing those pesky launch costs, which ruin what should otherwise be a routine trip to the Moon. Maybe in the future, rockets could be used hundreds or even thousands of times, like your car, or commercial airliners.

Is that the best we could do? Can’t we just ditch the rockets altogether? To get from the ground to orbit, you need to gain 7,800 meters per second of velocity. A rocket gives you that velocity through constant acceleration, but could you deliver that kind of velocity in a single kick?

How about a huge gun and just shoot things into orbit? You need to instantly impart enormous velocity to the vehicle. This creates thousands of times the force of gravity on the passengers. Anyone on board gets turned into a fine red coating distributed evenly throughout the cabin interior. You can only get away with this a few times before your guinea pig passengers get wise.
“Steward, there’s bone chips in my champagne!”

If you extend the length of the barrel of the gun over many kilometers, you can smooth out the force of acceleration that humans can actually withstand. This is the idea Startram proposed. They’re looking to build a track up the side of a mountain, and use electromagnetism to push a sled up to orbital velocity.

Different technologies to push a spacecraft down a long rail have been tested in several settings, including this Magnetic Levitation (MagLev) System evaluated at NASA's Marshall Space Flight Center. Engineers have a number of options to choose from as their designs progress. Photo credit: NASA
Different technologies to push a spacecraft down a long rail have been tested in several settings, including this Magnetic Levitation (MagLev) System evaluated at NASA’s Marshall Space Flight Center. Engineers have a number of options to choose from as their designs progress. Photo credit: NASA

This might sound far fetched, but many countries are using with maglev technology with trains and breaking speed records around the world. The Japanese recently pushed a maglev train to 603 kilometers per hour. This first version of Startram would cost $20 billion, and the tremendous forces would only work for any cargo being delivered in a non-living state, despite how it started out.

Even more expensive is the version with a 1500-kilometer track, able to spread the acceleration over a longer period and allow humans to fly into space, arriving safely in their original “non-paste” configuration.

There are a couple teeny technical hurdles. Such as a track 20 kilometers in altitude where projectiles exit the muzzle and venting atmosphere to prevent the shockwave that would tear the whole structure apart.

If it can be made to work, we could decrease launch costs down to $50/kilogram. Meaning a trip to the International Space Station could cost $5,000.

Another idea would be, unsurprisingly, lasers. I know it sounds like I’m making this up. Lasers can fix every future problem. They could track and blast launch vehicles with a special coating that vaporizes into gas when it’s heated. This would generate thrust like a rocket, but the vehicle would have to carry a fraction of the mass of traditional fuel.

You don’t even need to hit the rocket itself to create thrust. A laser could superheat air right behind the launch vehicle to create a tiny shockwave and generate thrust. This technology has been demonstrated with the Lightcraft prototype.

Artist's conception of World View's planned balloon mission some 19 miles (30 kilometers) up. Credit: World View Enterprises Inc.
Artist’s conception of World View’s planned balloon mission some 19 miles (30 kilometers) up. Credit: World View Enterprises Inc.

What about balloons? It’s possible to launch balloons now that could get to such a high altitude that they’re above 90% of the Earth’s atmosphere. This significantly reduces the amount of atmospheric drag that rockets would need to complete the journey to space.

The space colonization pioneer Gerard K. O’Neill envisioned a balloon-based spaceport floating at the edge of space. Astronauts would depart from the spaceport, and require less thrust to reach orbit.

We’ve also talked about the idea of a space elevator. Stretching a cable from the Earth up to geostationary orbit, and carry payloads up that way. There are enormous hurdles to developing technology like that. There might not even be materials strong enough in the Universe to support the forces.

But a complete space elevator might not be necessary. It could be possible to use tethers rotating at the edge of space, which transfer momentum to spacecraft, raising them step by step to a higher velocity and eventually into orbit. These tethers lose velocity with each assist, but they could have some other propulsion system, like an ion drive, to restore their orbital velocity.

Future methods of accessing space will be a combination of some or all of these ideas together with traditional and reusable rockets. Balloons and air launch systems to decrease the rocket’s drag, electromagnetic acceleration to reduce the amount of fuel needed, and ground-based lasers to provide power and additional thrust and pew-pew noises. Perhaps with a series of tethers carrying payloads into higher and higher orbits.

It’s nice to know that engineers are working on new and better ways to access space. Rockets have made space exploration possible, but there are a range of technologies we can use to bring down the launch costs and open up whole new vistas of space exploration and colonization. I can’t wait to see what happens next.

What alternative methods of getting to space are you most excited about? Let us know your thoughts in the comments below.