China Just Launched Its Largest Rocket Ever

China’s newest and biggest heavy-lift rocket was successfully launched today, Nov 3, 2016, testing out China’s latest rocket along with bringing an experimental satellite designed to test electric-propulsion technology.

The Long March 5 rocket blasted off from the Wenchang launch center on Hainan Island, off China’s southern coast, at 8:43 a.m. EDT (12:43:14 UTC; 8:43 p.m. Beijing time).

Although Chinese space officials have not released many details about the mission or the new rocket, reportedly the Long March-5, (or the Chang Zheng-5, CZ-5) gives China a launch vehicle with similar launch capability to the Delta 4 Heavy or ESA’s Ariane 5, which is twice the capability of China’s Long March-3 (CZ-3).

The 187-foot-tall (57-meter) Long March-5 is powered by 10 liquid-fueled engines, which reportedly generate about 2.4 million pounds of thrust.

The increase in capability is seen as essential for China’s long-range space goals for a bigger and permanently-staffed space station, missions to the Moon, a robotic mission to Mars and the launch of commercial satellites.

The @ChinaSpaceflight Twitter account tweeted this image the launch control center when the YZ-2 upper stage fired:

The Long March-5 is a large, two-stage rocket with a payload capacity of 25 tons to low-Earth orbit. According to the China Aerospace Science and Technology Corporation (CASC), the developer of the Long March-5, the rocket uses kerosene, liquid oxygen and liquid hydrogen, moving away from more toxic propellants like hydrazine and nitrogen tetroxide. This makes the new rocket not only less expensive to launch but more environmental friendly.

Today’s launch is the second from the new Wenchang launch complex. This past summer, on June 25, China’s new medium-sized Long March-7 made its initial launch from the site.

Source: Xinhuanet

China Launches Moon Mission to Test Key Lunar Sample Return Technologies

China launched a robotic mission to the Moon today (Oct. 23 EDT/Oct. 24 BJT) that will test a slew of key technologies required for safely delivering samples gathered from the Moon’s surface and returning them to Earth later this decade for analysis by researchers.

Today’s unmanned launch of what has been dubbed “Chang’e-5 T1” is a technology testbed serving as a precursor for China’s planned Chang’e-5 probe, a future mission aimed at conducting China’s first lunar sample return mission in 2017.

“Chang’e-5 T1” was successfully launched atop an advanced Long March-3C rocket at 2 AM Beijing local time (BJT), 1800 GMT, from the Xichang Satellite Launch Center in China’s southwestern Sichuan Province.

“The test spacecraft separated from its carrier rocket and entered the expected the orbit shortly after the liftoff, according to the State Administration of Science, Technology and Industry for National Defense (SASTIND),” says the official Xinhua news agency. The launch was not broadcast live.

The return capsule was placed on a lunar transfer trajectory that will take it on a simple eight day roundtrip flight around the Moon and journey back to Earth. The orbit had a perigee of 209 kilometers and will reach an apogee of some 380,000 kilometers and swing halfway around the Moon, but not enter lunar orbit.

Ignition and liftoff of the unmanned Chang'e 5 T1 lunar spacecraft atop a Long March-3C rocket from the Xichang Satellite Launch Center in China on Oct. 24, 2014, BJT (Oct. 23 EDT).  Credit: Xinhua/Jiang Hongjing
Ignition and liftoff of the unmanned Chang’e-5 T1 lunar spacecraft atop a Long March-3C rocket from the Xichang Satellite Launch Center in China on Oct. 24, 2014, BJT (Oct. 23 EDT). Credit: Xinhua/Jiang Hongjing

The probe was developed by the China Aerospace Science and Technology Corporation. The service module is based on China’s earlier Chang’e-2 spacecraft and the capsule somewhat resembles a mini-Shenzhou.

On its return, the probe will hit the Earth’s atmosphere at about 11.2 kilometers per second for reentry and a parachute assisted landing. The capsule is targeted to soft land in north China’s Inner Mongolia Autonomous Region.

The goal is to test and validate guidance, navigation and control, heat shield, and trajectory design technologies required for the sample return capsule’s safe re-entry following a lunar touchdown mission and collection of soil and rock samples from the lunar surface – planned for the Chang’e-5 mission.

Technicians at work testing the  Chang'e-5T1 return capsule. Credit: Spacechina.com
Technicians at work testing the Chang’e-5 T1 return capsule. Credit: China Aerospace Science and Technology Corporation/ Spacechina.com

China hopes to launch the Chang’e-5 mission in 2017 as the third step in the nation’s ambitious lunar exploration program.

The first step involved a pair of highly successful lunar orbiters named Chang’e-1 and Chang’e-2 which launched in 2007 and 2010, respectively.

The second step involved the hugely successful Chang’e-3 mothership lander and piggybacked Yutu moon rover which safely touched down on the Moon at Mare Imbrium (Sea of Rains) on Dec. 14, 2013 – marking China’s first successful spacecraft landing on an extraterrestrial body in history, and chronicled extensively in my reporting here.

This time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at two different positions during its trek over the Moon’s surface at its landing site from Dec. 15-18, 2013. This view was taken from the 360-degree panorama. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo.   See our complete Yutu timelapse pano at NASA APOD Feb. 3, 2014:  http://apod.nasa.gov/apod/ap140203.htm
This time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at two different positions during its trek over the Moon’s surface at its landing site from Dec. 15-18, 2013. This view was taken from the 360-degree panorama. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo. See our complete Yutu timelapse pano at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.htm

See below our time-lapse photo mosaic showing China’s Yutu rover dramatically trundling across the Moon’s stark gray terrain in the first weeks after she rolled all six wheels onto the desolate lunar plains.

360-degree time-lapse color panorama from China’s Chang’e-3 lander This 360-degree time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at three different positions during its trek over the Moon’s surface at its landing site from Dec. 15-22, 2013 during the 1st Lunar Day. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com.  See our Yutu timelapse pano at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.htm
360-degree time-lapse color panorama from China’s Chang’e-3 lander This 360-degree time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at three different positions during its trek over the Moon’s surface at its landing site from Dec. 15-22, 2013, during the 1st Lunar Day. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com. See our Yutu timelapse pano at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.htm

The complete time-lapse mosaic shows Yutu at three different positions trekking around the landing site, and gives a real sense of how it maneuvered around on its 1st Lunar Day.

The 360 degree panoramic mosaic was created by the imaging team of scientists Ken Kremer and Marco Di Lorenzo from images captured by the color camera aboard Chang’e-3 lander and was featured at Astronomy Picture of the Day (APOD) on Feb. 3, 2014.

Although Yutu was initially very successful, it encountered difficulties about six weeks after rolling onto the surface which prevented it from roving further across the surface and accomplishing some of its science objectives.

China’s space officials are currently evaluating whether they will proceed with launching the Chang’e-4 lunar landing mission in 2016, which was a backup probe to Chang’e-3.

China is pushing forward with plans to start building a manned space station later this decade and considering whether to launch astronauts to the Moon by the mid 2020s or later.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

…………….

Learn more about NASA Human and Robotic Spaceflight at Ken’s upcoming presentations:

Oct 26/27: “Antares/Cygnus ISS Rocket Launch from Virginia”; Rodeway Inn, Chincoteague, VA

Rocket Fail Video Shows Human And Technological Risk With Each Launch

What you see above is 32 minutes of something going wrong during each launch. While humanity has been launching things into space since the 1950s, you can see just how hard it is — over and over again. And when humans are riding aboard the rockets, the toll becomes more tragic.

According to the YouTube author of the video above, the vehicles shown include “V2, Vanguard TV3, Explorer S-1, Redstone 1, Titan I, Titan II, Titan IV, Atlas, Atlas-Centaur, N1, Delta, Delta III, Foton, Soyuz, Long March, Zenith, Space Shuttle Challenger, and more.”

Naturally, with each failure the engineers examine the systems and work to fix things for next time. A famous example is the Challenger shuttle explosion, which you can see about halfway through the video. There were multiple causes for the failure (human and technical), but one of them was an O-ring that failed in cold weather before the launch. NASA revised the launch rules and with contractors, made some changes to the booster rocket design, as a 2010 Air and Space Smithsonian article points out:

Freezing temperatures weakened an O-ring seal in a joint between two segments of the right booster. The weakness allowed hot gases to burn through the casing, causing the shuttle to break apart on ascent, which killed the seven-member crew. Two joints were redesigned with interlocking walls that had new bolts, pins, sensors, seals, and a third O-ring.

Still, launching is a risky business. That’s why it’s so important that engineers try to catch problems before they happen, and that as soon as a problem is seen, it’s fixed.