Tiny Swarming Spacecraft Could Establish Communications with Proxima Centauri

Swarm of laser-sail spacecraft leaving the solar system. Credit: Adrian Mann

Achieving interstellar travel has been the dream of countless generations, but the challenges remain monumental. Aside from the vast distances involved, there are also the prohibitive energy requirements and the sheer cost of assembling spacecraft that could survive the trip. Right now, the best bet for achieving an interstellar mission within a reasonable timeframe (i.e., a single person’s lifetime) is to build gram-scale spacecraft paired with lightsails. Using high-power laser arrays, these spacecraft could be accelerated to a fraction of the speed of light (relativistic speeds) and reach nearby stars in a few decades.

There are a handful of major projects, like Breakthrough Starshot, that hope to leverage this technology to create spacecraft that could reach Alpha Centauri in a few decades (instead of centuries). This technology also presents other opportunities, like facilitating communications across interstellar distances. This is the idea recently by a team of researchers led by the Initiative for Interstellar Studies (i4is). In a recent paper, they recommended that a swarm of gram-scale spacecraft could rely on their launch laser to maintain optical communications with Earth.

Continue reading “Tiny Swarming Spacecraft Could Establish Communications with Proxima Centauri”

Lasers Could Send Missions to Mars in Only 45 Days

Swarm of laser-sail spacecraft leaving the solar system. Credit: Adrian Mann

NASA and China plan to mount crewed missions to Mars in the next decade. While this represents a tremendous leap in terms of space exploration, it also presents significant logistical and technological challenges. For starters, missions can only launch for Mars every 26 months when our two planets are at the closest points in their orbit to each other (during an “Opposition“). Using current technology, it would take six to nine months to transit from Earth to Mars.

Even with nuclear-thermal or nuclear-electric propulsion (NTP/NEP), a one-way transit could take 100 days to reach Mars. However, a team of researchers from Montreal’s McGill University assessed the potential of a laser-thermal propulsion system. According to their study, a spacecraft that relies on a novel propulsion system – where lasers are used to heat hydrogen fuel – could reduce transit times to Mars to just 45 days!

Continue reading “Lasers Could Send Missions to Mars in Only 45 Days”

If Launched by 2028, a Spacecraft Could Catch up With Oumuamua in 26 Years

Laser sail spacecraft arriving at 'Oumuamua, the interstellar asteroid (Credit: Maciej Rebisz)

In October 2017, the interstellar object ‘Oumuamua passed through our Solar System, leaving a lot of questions in its wake. Not only was it the first object of its kind ever to be observed, but the limited data astronomers obtained as it shot out of our Solar System left them all scratching their heads. Even today, almost five years after this interstellar visitor made its flyby, scientists are still uncertain about its true nature and origins. In the end, the only way to get some real answers from ‘Oumuamua is to catch up with it.

Interestingly enough, there are many proposals on the table for missions that could do just that. Consider Project Lyra, a proposal by the Institute for Interstellar Studies (i4is) that would rely on advanced propulsions technology to rendezvous with interstellar objects (ISOs) and study them. According to their latest study, if their mission concept launched in 2028 and performed a complex Jupiter Oberth Manoeuvre (JOM), it would be able to catch up to ‘Oumuamua in 26 years.

Continue reading “If Launched by 2028, a Spacecraft Could Catch up With Oumuamua in 26 Years”