Kuiper Belt Objects Point The Way To Planet 9

Artist's impression of Planet Nine, blocking out the Milky Way. The Sun is in the distance, with the orbit of Neptune shown as a ring. Credit: ESO/Tomruen/nagualdesign
Artist's impression of Planet Nine, blocking out the Milky Way. The Sun is in the distance, with the orbit of Neptune shown as a ring. Credit: ESO/Tomruen/nagualdesign

On January 20th, 2016, researchers Konstantin Batygin and Michael E. Brown of Caltech announced that they had found evidence that hinted at the existence of a massive planet at the edge of the Solar System. Based on mathematical modeling and computer simulations, they predicted that this planet would be a super-Earth, two to four times Earth’s size and 10 times as massive. They also estimated that, given its distance and highly elliptical orbit, it would take 10,000 – 20,000 years to orbit the Sun.

Since that time, many researchers have responded with their own studies about the possible existence of this mysterious “Planet 9”. One of the latest comes from the University of Arizona, where a research team from the Lunar and Planetary Laboratory have indicated that the extreme eccentricity of distant Kuiper Belt Objects (KBOs) might indicate that they crossed paths with a massive planet in the past.

For some time now, it has been understood that there are a few known KBOs who’s dynamics are different than those of other belt objects. Whereas most are significantly controlled by the gravity of the gas giants planets in their current orbits (particularly Neptune), certain members of the scattered disk population of the Kuiper Belt have unusually closely-spaced orbits.

The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta), including Sedna (dark magenta), all mysteriously line up in a single direction. Also, when viewed in three dimensions, they tilt nearly identically away from the plane of the solar system. Another population of Kuiper belt objects (cyan) are forced into orbits that are perpendicular to the plane of the solar system and clustered in orientation. Batygin and Brown show that a planet with 10 times the mass of the earth in a distant eccentric orbit (orange) anti-aligned with the magenta orbits and perpendicular to the cyan orbits is required to maintain this configuration. Credit: Caltech/R. Hurt (IPAC)
The orbits of Neptune (magenta), Sedna (dark magenta), a series of Kuiper belt objects (cyan), and the hypothetical Planet 9 (orange). Credit: Caltech/R. Hurt (IPAC)

When Batygin and Brown first announced their findings back in January, they indicated that these objects instead appeared to be highly clustered with respect to their perihelion positions and orbital planes. What’s more, their calculation showed that the odds of this being a chance occurrence were extremely low (they calculated a probability of 0.007%).

Instead, they theorized that it was a distant eccentric planet that was responsible for maintaining the orbits of these KBOs. In order to do this, the planet in question would have to be over ten times as massive as Earth, and have an orbit that lay roughly on the same plane (but with a perihelion oriented 180° away from those of the KBOs).

Such a planet not only offered an explanation for the presence of high-perihelion Sedna-like objects – i.e. planetoids that have extremely eccentric orbits around the Sun. It would also help to explain where distant and highly inclined objects in the outer Solar System come from, since their origins have been unclear up until this point.

In a paper titled “Coralling a distant planet with extreme resonant Kuiper belt objects“, the University of Arizona research team – which included Professor Renu Malhotra, Dr. Kathryn Volk, and Xianyu Wang – looked at things from another angle. If in fact Planet 9 were crossing paths with certain high-eccentricity KBOs, they reasoned, it was a good bet that its orbit was in resonance with these objects.

Pluto and its cohorts in the icy-asteroid-rich Kuiper Belt beyond the orbit of Neptune. Credit: NASA
Pluto and its cohorts in the icy-asteroid-rich Kuiper Belt beyond the orbit of Neptune. Credit: NASA

To break it down, small bodies are ejected  from the Solar System all the time due to encounters with larger objects that perturb their orbits. In order to avoid being ejected, smaller bodies need to be protected by orbital resonances. While the smaller and larger objects may pass within each others’ orbital path, they are never close enough that they would able to exert a significant influence on each other.

This is how Pluto has remained a part of the Solar System, despite having an eccentric orbit that periodically cross Neptune’s path. Though Neptune and Pluto cross each others orbit, they are never close enough to each other that Neptune’s influence would force Pluto out of our Solar System. Using this same reasoning, they hypothesized that the KBOs examined by Batygin and Brown might be in an orbital resonance with the Planet 9.

As Dr.  Malhotra, Volk and Wang told Universe Today via email:

“The extreme Kuiper belt objects we investigate in our paper are distinct from the others because they all have very distant, very elliptical orbits, but their closest approach to the Sun isn’t really close enough for them to meaningfully interact with Neptune. So we have these six observed objects whose orbits are currently fairly unaffected by the known planets in our Solar System. But if there’s another, as yet unobserved planet located a few hundred AU from the Sun, these six objects would be affected by that planet.”

After examining the orbital periods of these six KBOs – Sedna, 2010 GB174, 2004 VN112, 2012 VP113, and 2013 GP136 – they concluded that a hypothetical planet with an orbital period of about 17,117 years (or a semimajor axis of about 665 AU), would have the necessary period ratios with these four objects. This would fall within the parameters estimated by Batygin and Brown for the planet’s orbital period (10,000 – 20,000 years).

Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9”. Credit: Caltech/nagualdesign
Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9”. Credit: Caltech/nagualdesign

Their analysis also offered suggestions as to what kind of resonance the planet has with the KBOs in question. Whereas Sedna’s orbital period would have a 3:2 resonance with the planet, 2010 GB174 would be in a 5:2 resonance, 2994 VN112 in a 3:1, 2004 VP113 in 4:1, and 2013 GP136 in 9:1. These sort of resonances are simply not likely without the presence of a larger planet.

“For a resonance to be dynamically meaningful in the outer Solar System, you need one of the objects to have enough mass to have a reasonably strong gravitational effect on the other,” said the research team. “The extreme Kuiper belt objects aren’t really massive enough to be in resonances with each other, but the fact that their orbital periods fall along simple ratios might mean that they each are in resonance with a massive, unseen object.”

But what is perhaps most exciting is that their findings could help to narrow the range of Planet 9’s possible location. Since each orbital resonance provides a geometric relationship between the bodies involved, the resonant configurations of these KBOs can help point astronomers to the right spot in our Solar System to find it.

But of course, Malhotra and her colleagues freely admit that several unknowns remain, and further observation and study is necessary before Planet 9 can be confirmed:

“There are a lot of uncertainties here. The orbits of these extreme Kuiper belt objects are not very well known because they move very slowly on the sky and we’ve only observed very small portions of their orbital motion. So their orbital periods might differ from the current estimates, which could make some of them not resonant with the hypothetical planet. It could also just be chance that the orbital periods of the objects are related; we haven’t observed very many of these types of objects, so we have a limited set of data to work with.”

Based on a careful study of Saturn's orbit and using mathematical models, French scientists were able to whittle down the search region for Planet Nine to "possible" and "probable" zones. Source: CNRS, Cote d'Azur and Paris observatories. Credit:
Estimates of Planet Nine’s “possible” and “probable” zones. by French scientists based on a careful study of Saturn’s orbit and using mathematical models. Source: CNRS, Cote d’Azur and Paris observatories. Credit: Bob King

Ultimately, astronomers and the rest of us will simply have to wait on further observations and calculations. But in the meantime, I think we can all agree that the possibility of a 9th Planet is certainly an intriguing one! For those who grew up thinking that the Solar System had nine planets, these past few years (where Pluto was demoted and that number fell to eight) have been hard to swallow.

But with the possible confirmation of this Super-Earth at the outer edge of the Solar System, that number could be pushed back up to nine soon enough!

Further Reading: arXiv.org

The (Possible) Dwarf Planet 2007 OR10

An artist's conception of 2007 OR10, nicknamed Snow White. Astronomers suspect that its rosy color is due to the presence of irradiated methane. [Credit: NASA]

Over the course of the past decade, more and more objects have been discovered within the Trans-Neptunian region. With every new find, we have learned more about the history of our Solar System and the mysteries it holds. At the same time, these finds have forced astronomers to reexamine astronomical conventions that have been in place for decades.

Consider 2007 OR10, a Trans-Neptunian Object (TNO) located within the scattered disc that at one time went by the nicknames of “the seventh dwarf” and “Snow White”. Approximately the same size as Haumea, it is believed to be a dwarf planet, and is currently the largest object in the Solar System that does not have a name.

Discovery and Naming:

2007 OR10 was discovered in 2007 by Meg Schwamb, a PhD candidate at Caltech and a graduate student of Michael Brown, while working out of the Palomar Observatory. The object was colloquially referred to as the “seventh dwarf” (from Snow White and the Seven Dwarfs) since it was the seventh object to be discovered by Brown’s team (after Quaoar in 2002, Sedna in 2003, Haumea and Orcus in 2004, and Makemake and Eris in 2005).

Comparison of Sedna with the other largest TNOs and with Earth (all to scale). Credit: NASA/Lexicon
Comparison of Sedna with the other largest TNOs and with Earth (all to scale). Credit: NASA/Lexicon

At the time of its discovery, the object appeared to be very large and very white, which led to Brown giving it the other nickname of “Snow White”. However, subsequent observation has revealed that the planet is actually one of the reddest in the Kuiper Belt, comparable only to Haumea. As a result, the nickname was dropped and the object is still designated as 2007 OR10.

The discovery of 2007 OR10 would not be formally announced until January 7th, 2009.

Size, Mass and Orbit:

A study published in 2011 by Brown – in collaboration with A.J. Burgasser (University of California San Diego) and W.C. Fraser (MIT) – 2007 OR10’s diameter was estimated to be between 1000-1500 km. These estimates were based on photometry data obtained in 2010 using the Magellan Baade Telescope at the Las Campanas Observatory in Chile, and from spectral data obtained by the Hubble Space Telescope.

However, a survey conducted in 2012 by Pablo Santos Sanz et al. of the Trans-Neptunian region produced an estimate of 1280±210 km based on the object’s size, albedo, and thermal properties. Combined with its absolute magnitude and albedo, 2007 OR10 is the largest unnamed object and the fifth brightest TNO in the Solar System. No estimates of its mass have been made as of yet.

2007 OR10 also has a highly eccentric orbit (0.5058) with an inclination of 30.9376°. What this means is that at perihelion, it is roughly 33 AU (4.9 x 109 km/30.67 x 109 mi) from our Sun while at aphelion, it is as distant as 100.66 AU (1.5 x 1010 km/9.36 x 1010 mi). It also has an orbital period of 546.6 years, which means that the last time it was at perihelion was 1857 and it won’t reach aphelion until 2130. As such, it is currently the second-farthest known large body in the Solar System, and  will be farther out than both Sedna and Eris by 2045.

Composition:

According to the spectral data obtained by Brown, Burgasser and Fraser, 2007 OR10 shows infrared signatures for both water ice and methane, which indicates that it is likely similar in composition to Quaoar. Concurrent with this, the reddish appearance of 2007 OR10 is believed to be due to presence of tholins in the surface ice, which are caused by the irradiation of methane by ultraviolet radiation.

The presence of red methane frost on the surfaces of both 2007 OR10 and Quaoar is also seen as an indication of the possible existence of a tenuous methane atmosphere, which would slowly evaporate into space when the objects are closer to the Sun. Although 2007 OR10 comes closer to the Sun than Quaoar, and is thus warm enough that a methane atmosphere should evaporate, its larger mass makes retention of an atmosphere just possible.

Also, the presence of water ice on the surface is believed to imply that the object underwent a brief period of cryovolcanism in its distant past. According to Brown, this period would have been responsible not only for water ice freezing on the surface, but for the creation of an atmosphere that included nitrogen and carbon monoxide. These would have been depleted rather quickly, and a tenuous atmosphere of methane would be all that remains today.

However, more data is required before astronomers can say for sure whether or not 2007 OR10 has an atmosphere, a history of cryovolcanism, and what its interior looks like. Like other KBOs, it is possible that it is differentiated between a mantle of ices and a rocky core. Assuming that there is sufficient antifreeze, or due to the decay of radioactive elements, there may even be a liquid-water ocean at the core-mantle boundary.

Classification:

Though it is too difficult to resolve 2007 OR10’s size based on direct observation, based on calculations of 2007 OR10’s albedo and absolute magnitude, many astronomers believe it to be of sufficient size to have achieved hydrostatic equilibrium. As Brown stated in 2011, 2007 OR10 “must be a dwarf planet even if predominantly rocky”, which is based on a minimum possible diameter of 552 km and what is believed to be the conditions under which hydrostatic equilibrium occurs in cold icy-rock bodies.

That same year, Scott S. Sheppard and his team (which included Chad Trujillo) conducted a survey of bright KBOs (including 2007 OR10) using the Palomar Observatory’s 48 inch Schmidt telescope. According to their findings, they determined that “[a]ssuming moderate albedos, several of the new discoveries from this survey could be in hydrostatic equilibrium and thus could be considered dwarf planets.”

Currently, nothing is known of 2007 OR10’s mass, which is a major factor when determining if a body has achieved hydrostatic equilibrium. This is due in part to there being no known satellite(s) in orbit of the object, which in turn is a major factor in determining the mass of a system. Meanwhile, the IAU has not addressed the possibility of accepting additional dwarf planets since before the discovery of 2007 OR10 was announced.

Alas, much remains to be learned about 2007 OR10. Much like it’s Trans-Neptunian neighbors and fellow KBOs, a lot will depend on future missions and observations being able to learn more about its size, mass, composition, and whether or not it has any satellites. However, given its extreme distance and fact that it is currently moving further and further away, opportunities to observe and explore it via flybys will be limited.

However, if all goes well, this potential dwarf planet could be joining the ranks of such bodies as Pluto, Eris, Ceres, Haumea and Makemake in the not-too-distant future. And with luck, it will be given a name that actually sticks!

We have many interesting articles on Dwarf Planets, the Kuiper Belt, and Plutoids here at Universe Today. Here’s Why Pluto is no longer a planet and how astronomers are predicting Two More Large Planets in the outer Solar System.

Astronomy Cast also has an episode all about Dwarf Planets titled, Episode 194: Dwarf Planets.

For more information, check out the NASA’s Solar System Overview: Dwarf Planets, and the Jet Propulsion Laboratory’s Small-Body Database, as well as Mike Browns Planets.

 

What Did We Learn About Pluto?

What Did We Learn About Pluto?

We’ve only had blurry images of Pluto up until New Horizons. So what did we learn when we got up close and personal with Pluto and its moons?

Clyde Tombaugh first discovered Pluto in 1930. He saw only see a single speck of light moving slowly in front of the background stars as he flipped photographic plates back and forth. Sadly, this was the best anyone could do for decades. Even the mighty Hubble, the most sensitive instrument ever focused on Pluto, could only resolve a few grainy pixels.

It’s because Pluto is really really far away: 7.5 billion kilometers. Just the light alone from there takes over 4 hours to reach us. In order to get any more information, humanity needed to reach out and send a spacecraft to Pluto, and photograph it, up close and personal.

In 1989, Alan Stern and a group of planetary scientists began working on a mission. Their work culminated in NASA’s New Horizons spacecraft, launched in 2006, beginning a 9 and a half year journey. And unless you’ve been living in a lunar lava tube, you know that New Horizons finally reached its destination in mid July 2015, passing a narrow 12,472 kilometers above the surface.

For the very first time in human history, we saw a member of the Kuiper Belt right up in it’s business. And now I retire these old low quality images Pluto! Begone artist’s illustrations!

From here on out, we’re all about sick high def photos of the surface and its moons. I for one am going to revel in them for a while.

So fashion shoots aside, what did we actually learn about Pluto? The primary mission was to map the geography of Pluto and its biggest moon, Charon. It would study the surface chemistry of these icy worlds, and measure their atmospheres, if they even exist at all.

The mission had a few other objectives, and of course, planetary scientists knew that the spacecraft would just surprise us with stuff we never expected. Kuiper Belt objects like Pluto and Charon are ancient; geologists expected them to be pockmarked with craters, large and small.

Views of Pluto during New Horizons' approach. Credit: NASA/Damian Peach
Views of Pluto during New Horizons’ approach. Credit: NASA/Damian Peach

Surprisingly, New Horizons showed relatively smooth surfaces on both worlds. Pluto has a Texas-sized region newly named Sputnik Planum, where exotic ices flow like glaciers. Frozen nitrogen, carbon dioxide and methane ices act just like the ones we have here on Earth. We can see from the relative lack of craters that this process is still happening.

Pluto has mountains. Mountains! Close ups show a young range with peaks as high as 11,000 feet, or 3,500 meters. Here’s the crazy part. Those exotic chemicals that act like snow and ice? They’re not hard enough to make mountain peaks like this.

At extreme cold temperatures, water ice becomes as hard as rock. These mountains are made of ice, and they’re very young, probably less than 100 million years old. There could be plate tectonics on Pluto, but with ice, not rock. My mind is blown.

Pluto’s moon Charon has a huge chasm longer and deeper than the Grand Canyon in Arizona and although scientists hoped to see an atmosphere, the reality was beyond anyone’s expectations.

Backlit by the sun, Pluto’s atmosphere rings its silhouette like a luminous halo in this image taken by NASA’s New Horizons spacecraft around midnight EDT on July 15. This global portrait of the atmosphere was captured when the spacecraft was about 1.25 million miles (2 million kilometers) from Pluto and shows structures as small as 12 miles across. The image, delivered to Earth on July 23, is displayed with north at the top of the frame.  Credits: NASA/JHUAPL/SwRI
Backlit by the sun, Pluto’s atmosphere rings its silhouette like a luminous halo in this image taken by NASA’s New Horizons spacecraft around midnight EDT on July 15. This global portrait of the atmosphere was captured when the spacecraft was about 1.25 million miles (2 million kilometers) from Pluto and shows structures as small as 12 miles across. The image, delivered to Earth on July 23, is displayed with north at the top of the frame. Credits: NASA/JHUAPL/SwRI

New Horizons detected a thin nitrogen atmosphere at Pluto. It could be snowing nitrogen on Pluto right now. There could be faint winds, since there are regions on Pluto that look like they might have undergone weathering.

Take a look at this photograph as New Horizons zipped away. You can see the atmosphere clearly surrounding the dwarf planet, interacting with the solar wind and creating a tail that stretches away from the Sun.

Here’s my favorite thing we learned. Pluto is about 80 km larger than previous estimates, which makes it the largest Kuiper Belt Object found so far. Even bigger than Eris, which is still a little more massive. So maybe it’s time to revisit that Pluto planethood debate again. I’m just messing with you. No good will ever come from having that debate. It will only end in tears.

Interestingly, the data connection between Earth and New Horizons is tenuous. Possibly the worst internet since AOL. It can only transmit back about 1kb of data per second, which means that we’ll need to wait about 16 months for the photographs and data to be sent home during the first few days of the flyby.

As an extra bonus, this isn’t the last we’re going to hear from New Horizons. Because it’s so far away, as the spacecraft can only trickle data back to Earth. It’s going to take almost 2 years for all the images and measurements it gathered during its flyby to get back to Earth for scientists to study. Expect many more discoveries and announcements over the coming years, and more videos from us.

Now that Pluto has finally been explored, where do you think we should go next in the Solar System? Tell us in the comments below.

NASA and New Horizons team pick post-Pluto target … and serve up an awesome video

An artist’s conception shows the New Horizons spacecraft flying past a Pluto-like object in the Kuiper Belt, the ring of icy material that lies billions of miles away from the sun. (Credit: Alex Parker / NASA / JHUAPL / SwRI)

NASA and the science team behind the New Horizons mission to Pluto and beyond have settled on the popular choice for the spacecraft’s next flyby: It’s 2014 MU69, an icy object a billion miles beyond Pluto that’s thought to be less than 30 miles (45 kilometers) wide.

That’s 10 times bigger than, say, the comet targeted by the European Space Agency’s Rosetta probe – but on the order of 1 percent as wide as Pluto. The New Horizons team suspects that 2014 MU69 represents a primordial object in the Kuiper Belt, the vast ring of icy material that lies beyond the orbit of Neptune.

Studying such a Kuiper Belt object, or KBO, should satisfy the mission’s post-Pluto objective of documenting the diversity of worlds at the solar system’s edge. “It is just the kind of ancient KBO, formed where it orbits now, that the Decadal Survey desired us to fly by,” New Horizons principal investigator Alan Stern said Friday in a NASA news release.

This chart shows the path of NASA’s New Horizons spacecraft toward its next potential target, the Kuiper Belt object 2014 MU69, also known as PT1. Other dwarf planets are indicated on the chart as well. (Credit: Alex Parker / NASA / JHUAPL / SwRI)
This chart shows the path of NASA’s New Horizons spacecraft toward its next potential target, the Kuiper Belt object 2014 MU69, also known as PT1. Other dwarf planets are indicated on the chart as well. (Credit: Alex Parker / NASA / JHUAPL / SwRI)

2014 MU69, also known as Potential Target 1 or PT1, was one of three objects identified after a months-long search that drew upon the observing power of the Hubble Space Telescope. Although an alternate target known as PT3 was somewhat brighter and probably bigger, PT1 was favored because there’s a 100 percent chance of reaching it with the fuel that was left on the New Horizons spacecraft after last month’s big Pluto flyby.

The New Horizons team has planned a series of four maneuvers in October and November to send the piano-sized probe toward 2014 MU69, but NASA won’t be able to give the final go-ahead for the extended mission until the team makes a formal proposal in 2016. If NASA gives the green light, the flyby is due to take place on Jan. 1, 2019.

In the meantime, New Horizons is continuing to send back imagery and other data that have been stored up since it flew past Pluto on July 14. New pictures should be released starting in a week or so.

This month, views from the Pluto flyby were mashed together with animations to produce a glorious time-lapse video. Check out this masterpiece by Southwest Research Institute’s Stuart Robbins on YouTube:

The Dwarf Planet (and Plutoid) Makemake

Discovered in 2005, Makemake, a Kuiper Belt Object (KBO) has . Credit: NASA

In 2003, astronomer Mike Brown and his team from Caltech began a discovery process which would change the way we think of our Solar System. Initially, it was the discovery of a body with a comparable mass to Pluto (Eris) that challenged the definition of the word “planet”. But in the months and years that followed, more discoveries would be made that further underlined the need for a new system of classification.

This included the discovery of Haumea, Orcus and Salacia in 2004, and Makemake in 2005. Like many other Trans-Neptunian Objects (TNOs) and Kuiper Belt Objects (KBOs) discovered in the past decade, this planet’s status is the subject of some debate. However, the IAU was quick to designate it as the fourth dwarf planet in our Solar System, and the third “Plutoid“.

Discovery and Naming:

Makemake was discovered on March 31st, 2005, at the Palomar Observatory by a team consisting of Mike Brown, Chad Trujillo and David Rainowitz. The discovery was announced to the public on July 29th, 2005, coincident with the announcement of the discovery of Eris. Originally, Brown and his team had been intent on waiting for further confirmation, but chose to proceed after a different team in Spain announced the discovery of Haumea on July 27th.

The provisional designation of 2005 FY9 was given to Makemake when the discovery was first made public. Before that, the discovery team used the codename “Easterbunny” for the object, because it was observed shortly after Easter. In July of 2008, in accordance with IAU rules for classical Kuiper Belt Objects, 2005 FY9 was given the name of a creator deity.

 Photograph of Makemake taken by the Hubble Space Telescope. Credit: NASA/Mike Brown
Photograph of Makemake taken by the Hubble Space Telescope. Credit: NASA/Mike Brown

In order to preserve the object’s connection with Easter, the object was given a name derived from the mythos of the Rapa Nui (the native people of Easter Island) to whom Makemake is the creator God. It was officially classified as a dwarf planet and a plutoid by the International Astronomical Union (IAU) on July 19th, 2008.

Size, Mass and Orbit:

Based on infrared observations conducted by Brown and his team using the Spitzer Space Telescope, which were compared to similar observations made by the Herschel Space Telescope, an estimated diameter of 1,360 – 1,480 km was made. Subsequent observations made during the 2011 stellar occulation by Makemake produced estimated dimensions of 1502 ± 45 × 1430 ± 9 km.

Estimates of its mass place it in the vicinity of 4 x 10²¹ kg (4,000,000,000 trillion kg), which is the equivalent of 0.00067 Earths. This makes Makemake the third largest known Trans-Neptunian Object (TNOs) – smaller than Pluto and Eris, and slightly larger than Haumea.

Makemake has a slightly eccentric orbit (of 0.159), which ranges from 38.590 AU (5.76 billion km/3.58 billion mi) at perihelion to 52.840 AU ( 7.94 billion km or 4.934 billion miles) at aphelion. It has an orbital period of 309.09 Earth years, and takes about 7.77 Earth hours to complete a single sidereal rotation. This means that a single day on Makemake is less than 8 hours and a single year last as long as 112,897 days.

A selection of dwarf planets, sometimes considered trans-Neptunian objects depending on their interactions with the planet Neptune. Credit: NASA/STSci
A selection of dwarf planets, sometimes considered trans-Neptunian objects depending on their interactions with the planet Neptune. Credit: NASA/STSci

As a classical Kuiper Belt Object, Makemake’s orbit lies far enough from Neptune to remain stable over the age of the Solar System. Unlike plutinos, which can cross Neptune’s orbit, classical KBOs are free from Neptune’s perturbation. Such objects have relatively low eccentricities (below 0.2) and orbit the Sun in much the same way the planets do. Makemake, however, is a member of the “dynamically hot” class of classical KBOs, meaning that it has a high inclination compared to others in its population.

Composition and Surface:

With an estimated mean density of 1.4–3.2 g/cm³, Makemake is believed to be differentiated between an icy surface and a rocky core. Like Pluto and Eris, the surface ice is believed to be composed largely of frozen methane (CH4) and ethane (C2H6). Though evidence exists for traces of nitrogen ice as well, it is nowhere near as prevalent as with Pluto or Triton.

Javier Licandro and his colleagues at the Instituto de Astrofisica de Canarias performed examinations of Makemake using the William Herschel Telescope and Telescopio Nazionale Galileo. According to their findings, Makemake has a very bright surface (with a surface albedo of 0.81) which means it closely resembles that of Pluto.

In essence, it appears reddish in color (significantly more so than Eris), which also indicates strong concentrations of tholins in the surface ice. This is consistent with the presence of methane ice, which would have turned red due to exposure to solar radiation over time.

Atmosphere:

During it’s 2011 occultation with an 18th-magnitutde star, Makemake abruptly blocked all of its light. These results showed that Makemake lacks a substantial atmosphere, which contradicted earlier assumptions about it having an atmosphere comparable to that of Pluto. However, the presence of methane and possibly nitrogen suggests that Makemake could have a transient atmosphere similar to that of Pluto when it reaches perihelion.

Makemake. Credit: NASA
Artist’s impression of the surface of Makemake. Credit: NASA

Essentially, when Makemake is closest to the Sun, nitrogen and other ices would sublimate, forming a tenuous atmosphere composed of nitrogen gas and hydrocarbons. The existence of an atmosphere would also provide a natural explanation for the nitrogen depletion, which could have been lost over time through the process of atmospheric escape.

Moon:

In April of 2016, observations using the Hubble Space Telescope‘s Wide Field Camera 3 revealed that Makemake had a natural satellite – which was designated S/2015 (136472) 1 (nicknamed MK 2 by the discovery team). It is estimated to be 175 km (110 mi) km in diameter and has a semi-major axis at least 21,000 km (13,000 mi) from Makemake.

Exploration:

Currently, no missions have been planned to the Kuiper Belt for the purpose of conducting a survey of Makemake. However, it has been calculated that – based on a launch date of August 21st, 2024, and August 24th, 2036 – a flyby mission to Makemake could take just over 16 years, using a Jupiter gravity assist. On either occasion, Makemake would be approximately 52 AU from the Sun when the spacecraft arrives.

Makemake is now the fourth designated dwarf planet in the solar system, and the third Plutoid. In the coming years, it is likely to be joined several more objects in the Trans-Neptunian region that are similar in size, mass, and orbit. And assuming we mount a flyby to the region, we may discover many similar objects, and learn a great deal more about this one.

We have many interesting articles on Makemake and the Kuiper Belt here at Universe Today. Here’s How Many Planets are in the Solar System, and Makemake’s Mysterious Atmosphere.

Sources:

Eris’ Moon Dysnomia

Tenth planet? Artists concept of the view from Eris with Dysnomia in the background, looking back towards the distant sun. Credit: Robert Hurt (IPAC)
Tenth planet? Artists concept of the view from Eris with Dysnomia in the background, looking back towards the distant sun. Credit: Robert Hurt (IPAC)

Ask a person what Dysnomia refers to, and they might venture that it’s a medical condition. In truth, they would be correct. But in addition to being a condition that affects the memory (where people have a hard time remembering words and names), it is also the only known moon of the distant dwarf planet Eris.

In fact, the same team that discovered Eris a decade ago – a discovery that threw our entire notion of what constitutes a planet into question – also discovered a moon circling it shortly thereafter. As the only satellite that circles one of the most distant objects in our Solar System, much of what we know about this ball of ice is still subject to debate.

Discovery and Naming:

In January of 2005, astronomer Mike Brown and his team discovered Eris using the new laser guide star adaptive optics system at the W. M. Keck Observatory in Hawaii. By September, Brown and his team were conducting observations of the four brightest Kuiper Belt Objects – which at that point included Pluto, Makemake, Haumea, and Eris – and found indications of an object orbiting Eris.

Provisionally, this body was designated S/2005 1 (2003 UB³¹³). However, in keeping with the Xena nickname that his team was already using for Eris, Brown and his colleagues nicknamed the moon “Gabrielle” after Xena’s sidekick. Later, Brown selected the official name of Dysnomia for the moon, which seemed appropriate for a number of reasons.

For one, this name is derived from the daughter of the Greek god Eris – a daemon who represented the spirit of lawlessness – which was in keeping with the tradition of naming moons after lesser gods associated with the primary god. It also seemed appropriate since the “lawless” aspect called to mind actress Lucy Lawless, who portrayed Xena on television. However, it was not until the IAU’s resolution on what defined a planet – passed in August of 2006 – that the planet was officially designated as Dysnomia.

Size, Mass and Orbit:

The actual size of Dysnomia is subject to dispute, and estimates are based largely on the planet’s albedo relative to Eris. For example, the IAU and Johnston’s Asteroids with Satellites Database estimate that it is 4.43 magnitudes fainter than Eris and has an approximate diameter of between 350 and 490 km (217 – 304 miles)

However, Brown and his colleagues have stated that their observations indicate it to be 500 times fainter and between 100 and 250 km (62 – 155 miles) in diameter. Using the Herschel Space Observatory in 2012, Spanish astronomer Pablo Santo Sanz and his team determined that, provided Dysnomia has an albedo five times that of Eris, it is likely to be 685±50 km in diameter.

Forget about Pluto for a moment. Should Eris be our tenth Planet? Like Pluto it has a prominent moon- Dysnomia. Human perception and conceptions of the Universe have shaped our view of the Solar System. The Ptolemaic system (Earth centered), Kepler's Harmonic Spheres, even the fact that ten digits reside on our hands impact our impression of the Solar System (Photo Credits:NASA/ESA and M. Brown / Caltech)
Eris and its moon, Dysnomia, as imaged by the W.M. Keck Observatory in Hawaii. Credits:NASA/ESA and M. Brown/Caltech

In 2007, Brown and his team also combined Keck and Hubble observations to determine the mass of Eris, and estimate the orbital parameters of the system. From their calculations, they determined that Dysnomia’s orbital period is approximately 15.77 days. These observations also indicated that Dysnomia has a circular orbit around Eris, with a radius of 37350±140 km. In addition to being a satellite of a dwarf planet, Dysnomia is also a Kuiper Belt Object (KBO) like Eris.

Composition and Origin:

Currently, there is no direct evidence to indicate what Dysnomia is made of. However, based on observations made of other Kuiper Belt Objects, it is widely believed that Dysnomia is composed primarily of ice. This is based largely on infrared observations made of Haumea (2003 EL61), the fourth largest object in the Kuiper Belt (after Eris, Pluto and Makemake) which appears to be made entirely of frozen water.

Astronomers now know that three of the four brightest KBOs – Pluto, Eris and Haumea – have one or more satellites. Meanwhile, of the fainter members, only about 10% are known to have satellites. This is believed to imply that collisions between large KBOs have been frequent in the past. Impacts between bodies of the order of 1000 km across would throw off large amounts of material that would coalesce into a moon.

This is an artist's concept of Kuiper Belt object Eris and its tiny satellite Dysnomia. Eris is the large object at the bottom of the illustration. A portion of its surface is lit by the Sun, located in the upper left corner of the image. Eris's moon, Dysnomia, is located just above and to the left of Eris. The Hubble Space Telescope and Keck Observatory took images of Dysnomia's movement from which astronomer Mike Brown (Caltech) precisely calculated Eris to be 27 percent more massive than Pluto. Artwork Credit: NASA, ESA, Adolph Schaller (for STScI)
Artist’s concept of Kuiper Belt Object Eris and its tiny satellite Dysnomia. The Hubble Space Telescope and Keck Observatory took images of Dysnomia’s movement from which astronomer Mike Brown (Caltech) precisely calculated Eris to be 27 percent more massive than Pluto. Credit: NASA/ESA/Adolph Schaller (for STScI)

This could mean that Dysnomia was the result of a collision between Eris and a large KBO. After the impact, the icy material and other trace elements that made up the object would have evaporated and been ejected into orbit around Eris, where it then re-accumulated to form Dysnomia. A similar mechanism is believed to have led to the formation of the Moon when Earth was struck by a giant impactor early in the history of the Solar System.

Since its discovery, Eris has lived up to its namesake by stirring things up. However, it has also helped astronomers to learn many things about this distant region of the Solar System. As already mentioned, astronomers have used Dysnomia to estimate the mass of Eris, which in turn helped them to compare it to Pluto.

While astronomers already knew that Eris was bigger than Pluto, but they did not know whether it was more massive. This they did by measuring the distance between Dysnomia and how long it takes to orbit Eris. Using this method, astronomers were able to discover that Eris is 27% more massive than Pluto is.

With this knowledge in hand, the IAU then realized that either Eris needed to be classified as a planet, or that the term “planet” itself needed to be refined. Ergo, one could make that case that it was the discovery of Dysnomia more than Eris that led to Pluto no longer being designated a planet.

Universe Today has articles on Xena named Eris and The Dwarf Planet Eris. For more information, check out Dysnomia and dwarf planet outweighs Pluto.

Astronomy Cast has an episode on Pluto’s planetary identity crisis.

Sources:

New Horizons Mission to Pluto

Artist's impression of the New Horizons spacecraft in orbit around Pluto (Charon is seen in the background). Credit: NASA/JPL

Humans have been sending spacecraft to other planets, as well as asteroid and comets, for decades. But rarely have any of these ventured into the outer reaches of our Solar System. In fact, the last time a probe reached beyond the orbit of Saturn to explore the worlds of Neptune, Uranus, Pluto and beyond was with the Voyager 2 mission, which concluded back in 1989.

But with the New Horizons mission, humanity is once again peering into the outer Solar System and learning much about its planets, dwarf planets, planetoids, moons and assorted objects. And as of July 14th, 2015, it made its historic rendezvous with Pluto, a world that has continued to surprise and mystify astronomers since it was first discovered.

Background:

In 1980, after Voyager 1‘s flyby of Saturn, NASA scientists began to consider the possibility of using Saturn to slingshot the probe towards Pluto to conduct a flyby by 1986. This would not be the case, as NASA decided instead to conduct a flyby of Saturn’s moon of Titan – which they considered to be a more scientific objective – thus making a slingshot towards Pluto impossible.

Because no mission to Pluto was planned by any space agency at the time, it would be years before any missions to Pluto could be contemplated. However, after Voyager 2′s flyby of Neptune and Triton in 1989, scientists once again began contemplating a mission that would take a spacecraft to Pluto for the sake of studying the Kuiper Belt and Kuiper Belt Objects (KBOs).

Voyager 2. Credit: NASA
Artist’s impression of the Voyager spacecraft in flight. Credit: NASA/JPL

In May 1989, a group of scientists, including Alan Stern and Fran Bagenal, formed an alliance called the “Pluto Underground”. Committed to the idea of mounting an exploratory mission to Pluto and the Kuiper Belt, this group began lobbying NASA and the US government to make it this plan a reality. Combined with pressure from the scientific community at large, NASA began looking into mission concepts by 1990.

During the course of the late 1990s, a number of Trans-Neptunian Objects (TNOs) were discovered, confirming the existence of the Kuiper Belt and spurring interest in a mission to the region. This led NASA to instruct the JPL to re-purpose the mission as a Pluto and KBO flyby. However, the mission was scrapped by 2000, owing to budget constraints.

Backlash over the cancellation led NASA’s Science Mission Directorate to create the New Frontiers program which began accepting mission proposals. Stamatios “Tom” Krimigis, head of the Applied Physics Laboratory’s (APL) space division, came together with Alan Stern to form the New Horizons team. Their proposal was selected from a number of submissions, and officially selected for funding by the New Frontiers program in Nov. 2001.

Despite additional squabbles over funding with the Bush administration, renewed pressure from the scientific community allowed the New Horizons team managed to secure their funding by the summer of 2002. With a commitment of $650 million for the next fourteen years, Stern’s team was finally able to start building the spacecraft and its instruments.

Engineers working on the New Horizons spacecraft's Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument. Credit: NASA
Engineers working on the New Horizons spacecraft’s Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument. Credit: NASA

Mission Profile:

New Horizons was planned as a voyage to the only unexplored planet in the Solar System, and was originally slated for launch in January 2006 and arrival at Pluto in 2015. Alan Stern was selected as the mission’s principal investigator, and construction of the spacecraft was handled primarily by the Southwest Research Institute (SwRI) and the Johns Hopkins Applied Physics Laboratory, with various contractor facilities involved in the navigation of the spacecraft.

Meanwhile, the US Naval Observatory (USNO) Flagstaff Station – in conjunction with NASA and JPL – was responsible for performing navigational position data and related celestial frames. Coincidentally, the UNSO Flagstaff station was where the photographic plates that led to the discovery of Pluto’s moon Charon came from.

In addition to its compliment of scientific instruments (listed below), there are several cultural artifacts traveling aboard the spacecraft. These include a collection of 434,738 names stored on a compact disc, a piece of Scaled Composites’s SpaceShipOne, and a flag of the USA, along with other mementos. In addition, about 30 g (1 oz) of Clyde Tombaugh’s ashes are aboard the spacecraft, to commemorate his discovery of Pluto in 1930.

The New Horizons spacecraft takes off on Jan. 19, 2006 from the Kennedy Space Center for its planned close encounter with Pluto. Credit: NIKON/Scott Andrews/NASA
The New Horizons spacecraft takes off on Jan. 19, 2006 from the Kennedy Space Center for its planned close encounter with Pluto. Credit: NIKON/Scott Andrews/NASA

Instrumentation:

The New Horizons science payload consists of seven instruments. They are (in alphabetically order):

  • Alice: An ultraviolet imaging spectrometer responsible for analyzing composition and structure of Pluto’s atmosphere and looks for atmospheres around Charon and Kuiper Belt Objects (KBOs).
  • LORRI: (Long Range Reconnaissance Imager) a telescopic camera that obtains encounter data at long distances, maps Pluto’s farside and provides high resolution geologic data.
  • PEPSSI: (Pluto Energetic Particle Spectrometer Science Investigation) an energetic particle spectrometer which measures the composition and density of plasma (ions) escaping from Pluto’s atmosphere.
  • Ralph: A visible and infrared imager/spectrometer that provides color, composition and thermal maps.
  • REX: (Radio Science EXperiment) a device that measures atmospheric composition and temperature; passive radiometer.
  • SDC: (Student Dust Counter) built and operated by students, this instrument measures the space dust peppering New Horizons during its voyage across the solar system.
  • SWAP: (Solar Wind Around Pluto) a solar wind and plasma spectrometer that measures atmospheric “escape rate” and observes Pluto’s interaction with solar wind.
Instruments New Horizons will use to characterize Pluto are REX (atmospheric composition and temperature; PEPSSI (composition of plasma escaping Pluto's atmosphere); SWAP (solar wind); LORRI (close up camera for mapping, geological data); Star Dust Counter (student experiment measuring space dust during the voyage); Ralph (visible and IR imager/spectrometer for surface composition and thermal maps and Alice (composition of atmosphere and search for atmosphere around Charon). Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
The instruments New Horizons will use to characterize Pluto. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Launch:

Due to a series of weather-related delays, the New Horizons mission launched on January 19th, 2006, two days later than originally scheduled. The spacecraft took off from Cape Canaveral Air Force Station, Florida, at 15:00 EST (19:00 UTC) atop an Atlas V 551 rocket. This was the first launch of this particular rocket configuration, which has a third stage added to increase the heliocentric (escape) speed.

The spacecraft left Earth faster than any spacecraft to date, achieving a launch velocity of 16.5 km/s. It took only nine hours to reach the Moon’s orbit, passing lunar orbit before midnight (EST) on the same day it was launched. It has not, however, broken Voyager 1‘s record – which is currently traveling at 17.145 km/s (61,720 km/h, 38,350 mph) relative to the Sun – for being the fastest spacecraft to leave the Solar System.

Inner Solar System:

Between January and March, 2006, mission controllers guided the probe through a series of trajectory-correction maneuvers (TCMs). During the week of February 20th, 2006, controllers conducted in-flight tests on three of the major on board science instruments. On April 7th, the spacecraft passed the orbit of Mars, moving at roughly 21 km/s (76,000 km/h; 47,000 mph) away from the Sun.

At this point in its journey, the spacecraft had reached a distance of 243 million kilometers from the Sun, and approximately 93.4 million km from Earth. On June 13th, 2006, the New Horizons spacecraft passed the tiny asteroid 132524 APL at a distance of 101,867 km (63,297 mi) when it was closest.

Using the Ralph instrument, New Horizons was able to capture images of the asteroid, estimating to be 2.5 km (1.6 mi) in diameter. The spacecraft also successfully tracked the asteroid from June 10th-12th, 2006, allowing the mission team to test the spacecraft’s ability to track rapidly moving objects.

First images of Pluto in September 2006. Credit: NASA
First images of Pluto taken by New Horizons in September 2006. Credit: NASA

From September 21st-24th, New Horizons managed to capture its first images of Pluto while testing the LORRI instruments. These images, which were taken from a distance of approximately 4,200,000,000 km (2.6×109 mi) or 28.07 AU and released on November 28th, confirmed the spacecraft’s ability to track distant targets.

Outer Solar System:

On September 4th, 2006, New Horizons took its first pictures of Jupiter at a distance of 291 million kilometers (181 million miles). The following January, it conducted more detailed surveys of the system, capturing an infrared image of the moon Callisto, and several black and white images of Jupiter itself.

By February 28th, 2007, at 23:17 EST (03:17, UTC) New Horizons made its closest approach to Europa, at a distance of 2,964,860 km (1,842,278 mi). At 01:53:40 EST (05:43:40 UTC), the spacecraft made its flyby of Jupiter, at a distance of 2.3 million km (1.4 million mi) and received a gravity assist.

The Jupiter flyby increased New Horizons‘ speed by 4 km/s (14,000 km/h; 9,000 mph), accelerating the probe to a velocity of 23 km/s (83,000 km/h; 51,000 mph) relative to the Sun and shortening its voyage to Pluto by three years.

The encounter with Jupiter not only provided NASA with the opportunity to photograph the planet using the latest equipment, it also served as a dress rehearsal for the spacecraft’s encounter with Pluto. As well as testing the imaging instruments, it also allowed the mission team to test the communications link and the spacecraft’s memory buffer.

Black and white image of Jupiter viewed by LORRI in January 2007
Black and white image of Jupiter viewed by LORRI in January 2007. Credit: NASA/John Hopkins University Applied Physics Laboratory/Southwest Research Institute

One of the main goals during the Jupiter encounter was observing its atmospheric conditions and analyzing the structure and composition of its clouds. Heat-induced lightning strikes in the polar regions and evidence of violent storm activity were both observed. In addition, the Little Red Spot,  was imaged from up close for the first time. The New Horizons spacecraft also took detailed images of Jupiter’s faint ring system. Traveling through Jupiter’s magnetosphere, the spacecraft also managed to collect valuable particle readings.

The flyby of the Jovian systems also gave scientists the opportunity to examine the structure and motion of Io’s famous lava plumes. New Horizons measured the plumes coming from the Tvashtar volcano, which reached an altitude of up to 330 km from the surface, while infrared signatures confirmed the presence of 36 more volcanoes on the moon.

Callisto’s surface was also analyzed with LEISA, revealing how lighting and viewing conditions affect infrared spectrum readings of its surface water ice. Data gathered on minor moons such as Amalthea also allowed NASA scientists to refine their orbit solutions.

After passing Jupiter, New Horizons spent most of its journey towards Pluto in hibernation mode. During this time, New Horizons crossed the orbit of Saturn (June 8, 2008) and Uranus on (March 18, 2011). In June 2014, the spacecraft emerged from hibernation and the team began conducting instrument calibrations and a course correction,. By August 24th, 2014, it crossed Neptune’s orbit on its way to Pluto.

Capturing Callisto
New Horizons Long Range Reconnaissance Imager (LORRI) captured these two images of Jupiter’s outermost large moon, Callisto, during its flyby in February 2007. Credit: NASA/JPL

Rendezvous with Pluto:

Distant-encounter operations at Pluto began on January 4th, 2015. Between January 25th to 31st, the approaching probe took several images of Pluto, which were released by NASA on February 12th. These photos, which were taken at a distance of more than 203,000,000 km (126,000,000 mi) showed Pluto and its largest moon, Charon.

Investigators compiled a series of images of the moons Nix and Hydra taken from January 27th through February 8th, 2015, beginning at a range of 201,000,000 km (125,000,000 mi), while Kerberos and Styx were captured by photos taken on April 25.

On July 4th, 2015, NASA lost contact with New Horizons after it experienced a software anomaly and went into safe mode. On the following day, NASA announced that they had determined it to be the result of a timing flaw in a command sequence. By July 6th, the glitch had been fixed and the probe had exited safe mode and began making its approach.

The New Horizons spacecraft made its closest approach to Pluto at 07:49:57 EDT (11:49:57 UTC) on July 14th, 2015, and then Charon at 08:03:50 EDT (12:03:50 UTC). Telemetries confirming a successful flyby and a healthy spacecraft reached Earth on 20:52:37 EDT (00:52:37 UTC).

During the flyby, the probe captured the clearest pictures of Pluto to date, and full analyses of the data obtained is expected to take years to process. The spacecraft is currently traveling at a speed of 14.52 km/s (9.02 mi/s) relative to the Sun and at 13.77 km/s (8.56 mi/s) relative to Pluto.

Full trajectory of New Horizons space probe (sideview). Credit: pluto.jhuapl.edu
Full trajectory of New Horizons space probe (sideview). Credit: pluto.jhuapl.edu

Future Objectives:

With its flyby of Pluto now complete, the New Horizons probe is now on its way towards the Kuiper Belt. The goal here is to study one or two other Kuiper Belt Objects, provided suitable KBOs are close to New Horizons‘ flight path.

Three objects have since been selected as potential targets, which were provisionally designated PT1 (“potential target 1”), PT2 and PT3 by the New Horizons team. These have since been re-designated as 2014 MU69 (PT1), 2014 OS393 (PT2), and 2014 PN70 (PT3).

All of these objects have an estimated diameter of 30–55 km, are too small to be seen by ground telescopes, and are 43–44 AU from the Sun, which would put the encounters in the 2018–2019 period. All are members of the “cold” (low-inclination, low-eccentricity) classical Kuiper Belt, and thus very different from Pluto.

Even though it was launched far faster than any outward probe before it, New Horizons will never overtake either Voyager 1 or Voyager 2 as the most distant human-made object from Earth. But then again, it doesn’t need to, given that what it was sent out to study all lies closer to home.

What’s more, the probe has provided astronomers with extensive and updated data on many of planets and moons in our Solar System – not the least of which are the Jovian and Plutonian systems. And last, but certainly not least, New Horizons is the first spacecraft to have it made it out to such a distance since the Voyager program.

And so we say so long and good luck to New Horizons, not to mention thanks for providing us with the best images of Pluto anyone has ever seen! We can only hope she fares well as she makes its way into the Kuiper Belt and advances our knowledge of the outer Solar System even farther.

We have many interesting articles about the New Horizons spacecraft and Pluto here on Universe Today. For example, here are some Interesting Facts About PlutoHow Long Does it Take to Get to Pluto, Why Pluto is No Longer Considered a Planet, and Is There Life on Pluto?

For more information on the Kuiper Belt, check out What is The Kuiper Belt? and NASA’s Solar System Exploration entry on the Kuiper Belt and Oort Cloud.

Astronomy Cast also has some fascinating episodes on Pluto, including On Pluto’s Doorstep – Live Hangout with New Horizons Team

And be sure to check out the New Horizons mission homepage at NASA.

Some Planet-like Kuiper Belt Objects Don’t Play “Nice”

Distribution of Kuiper belt objects (green), along with various other outer Solar System bodies, based on data from the Minor Planet Center. [Credit: Minor Planet Center; Murray and Dermott]

The Kuiper belt — the region beyond the orbit of Neptune inhabited by a number of small bodies of rock and ice — hides many clues about the early days of the Solar System. According to the standard picture of Solar System formation, many planetesimals were born in the chaotic region where the giant planets now reside. Some were thrown out beyond the orbit of Neptune, while others stayed put in the form of Trojan asteroids (which orbit in the same trajectory as Jupiter and other planets). This is called the Nice model.

However, not all Kuiper belt objects (KBOs) play nicely with the Nice model.

(I should point out that the model is named named for the city in France and therefore pronounced “neese”.) A new study of large scale surveys of KBOs revealed that those with nearly circular orbits lying roughly in the same plane as the orbits of the major planets don’t fit the Nice model, while those with irregular orbits do. It’s a puzzling anomaly, one with no immediate resolution, but it hints that we need to refine our Solar System formation models.

This new study is described in a recently released paper by Wesley Fraser, Mike Brown, Alessandro Morbidelli, Alex Parker, and Konstantin Baygin (to be published in the Astrophysical Journal, available online). These researchers combined data from seven different surveys of KBOs to determine roughly how many of each size of object are in the Solar System, which in turn is a good gauge of the environment in which they formed.

The difference between this and previous studies is the use of absolute magnitudes — a measure of how bright an object really is — as opposed to their apparent magnitudes, which are simply how bright an object appears. The two types of magnitude are related by the distance an object is from Earth, so the observational challenge comes down to accurate distance measurements. Absolute magnitude is also related to the size of an KBO and its albedo (how much light it reflects), both important physical quantities for understanding formation and composition.

Finding the absolute magnitudes for KBOs is more challenging than apparent magnitudes for obvious reasons: these are small objects, often not resolved as anything other than points of light in a telescope. That means requires measuring the distance to each KBO as accurately as possible. As the authors of the study point out, even small errors in distance measurements can have a large effect on the estimated absolute magnitude.

The bodies in the Kuiper Belt. Credit: Don Dixon
The bodies in the Kuiper Belt. Credit: Don Dixon

In terms of orbits, KBOs fall into two categories: “hot” and “cold”, confusing terms having nothing to do with temperature. The “cold” KBOs are those with nearly circular orbits (low eccentricity, in mathematical terms) and low inclinations, meaning their trajectories lie nearly in the ecliptic plane, where the eight canonical planets also orbit. In other words, these objects have nearly planet-like orbits. The “hot” KBOs have elongated orbits and higher inclinations, behavior more akin to comets.

The authors of the new study found that the hot KBOs have the same distribution of sizes as the Trojan asteroids, meaning there are the same relative number of small, medium, and large KBOs and similarly sized Trojans. That hints at a probable common origin in the early days of the Solar System. This is in line with the Nice model, which predicts that, as they migrated into their current orbits, the giant planets kicked many planetesimals out beyond Neptune.

However, the cold KBOs don’t match that pattern at all: there are fewer large KBOs relative to smaller objects. To make matters more strange, both hot and cold seem to follow the same pattern for the smaller bodies, only deviating at larger masses, which is at odds with expectations if the cold KBOs formed where they orbit today.

To put it another way, the Nice model as it stands could explain the hot KBOs and Trojans, but not the cold. That doesn’t mean all is lost, of course. The Nice model seems to do very well except for a few nagging problems, so it’s unlikely that it’s completely wrong. As we’ve learned from studying exoplanet systems, planet formation models are a work in progress — and astronomers are an ingenious lot.

Neptune Acquitted on One Count of Harassment

Illustration of a primordial Kuiper Belt binary during a close approach with the planet Neptune, similar to the encounters studied by Parker and Kavelaars. Credit: University of Victoria

[/caption]

A very popular explanation for the dynamical evolution of our solar system is being challenged by a new model that takes the blame away from Neptune for knocking a collection of planetoids known as the Cold Classical Kuiper Belt out to their current, distant home. PhD student Alex Parker from the University of Victoria in British Columbia, Canada presented evidence showing that the large population of binary objects in the Kuiper Belt gives witness to a different series of events than the Nice Model – which says Neptune’s migrations were responsible for a sending KBO’s into chaotic orbits. “Kuiper binaries paint a different picture,” Parker said during a press briefing at the American Astronomical Society’s Division of Planetary Sciences meeting this week. “I should title my talk as ‘Neptune not guilty of harassment’ or perhaps more accurately, “Planet Neptune acquitted of one count of harassment.’”

The Nice Model holds that the objects in the scattered Kuiper Belt were placed in their current positions by interactions with Neptune’s migrating resonances. Originally, the Model says, the Kuiper belt was much denser and closer to the Sun, with an outer edge at approximately 30 AU. Its inner edge would have been just beyond the orbits of Uranus and Neptune, which were in turn far closer to the Sun when they formed. As Neptune migrated outward, it approached the objects in the proto-Kuiper belt, capturing some of them into resonances and sending others into chaotic orbits.

But the survey of the Kuiper Belt being done by Parker and his thesis supervisor Dr. J. J Kavelaars (Herzberg Institute of Astrophysics), which has been running for a decade, tells a different story. “Thirty per cent of Kuiper Belt Objects are binaries, some in very wide orbits around each other in a slow waltz, weakly bound to their partners,” Parker said. “These binaries should have been destroyed if the Kuiper Belt Objects were thrown out of solar system.”

Since binaries are extremely common in the Kuiper Belt, they are useful tools for astronomers, said Parker. “Pluto and Charon are the most famous of these binaries and since their orbits can be affected by their environment, we can use them to test what the interplanetary environment is like and what it was like in the past.”

Diagram illustrating the process that destroys binaries during close encounters. Credit: University of Victoria

Using computer simulations, the researchers determined that many binary systems in part of the Belt would have been destroyed by the manhandling they would have experienced if Neptune did indeed move the Kuiper Belt to its current location.

The survey characterizes the orbits of these binaries and found that many are extremely wide – the widest one is about 100,000 km – and they are very delicate. “Because they are so weakly bound they can be upset by collisions from small objects peppering the KBOs,” said Parker, “and they would not be there today if the members of this part of the Kuiper Belt were ever hassled by Neptune in the past.”

Additionally, the current environment of the Kuiper Belt does not lend itself to the creation of these binaries, so they have been interacting with each other for a very long time. The research done by Parker and his colleagues suggest that the Kuiper Belt formed near its present location and has remained undisturbed over the age of the solar system.

The new model also solves the missing mass problem for the Kuiper Belt, Parker said. “The Nice Model – as well as all the other models of the formation of the Kuiper Belt — suggests its density was much higher so the binaries could be generated, but we don’t see that density today.”

The Cold Classical Kuiper Belt lies in a very flat ring between 6 and 7 billion kilometers from the Sun, and contains thousands of bodies larger than 100 kilometers across. The Kuiper Belt is of special interest to astrophysicists because it is a fossil remnant of the primordial debris that formed the planets, said Parker. “Understanding the structure and history of the Kuiper Belt helps us better understand how the planets in our solar system formed, and how planets around other stars may be forming today.”

Read the team’s paper: “Destruction of Binary Minor Planets During Neptune Scattering,” Alex H. Parker, JJ Kavelaars

Sources: DPS meeting press briefing, DPS abstract, University of Victoria press release.

Occultation Reveals Distant Kuiper Belt Object is Surprisingly Icy Bright

An artist's rendering of a Kuiper Belt object. Image: NASA
An artist's rendering of a Kuiper Belt object. Image: NASA

[/caption]

How do you study an extremely small planetary body in the dim outer reaches of our solar system? Get all your friends from around the world to wait for a very elusive – if not short-lived – special event. And in doing so, you may find something completely unexpected. Enter James Elliot from MIT, who worked with dozens of observatories and astronomers across the globe, including Jay Pasachoff from Williams College in Massachusetts, in an attempt to make observations of the Kuiper Belt Object 55636, (also known as 2002 TX300) a small body orbiting about 48 AU away from the Sun. Since this KBO is too small and distant for direct observations of its surface, the astronomers tracked and plotted its course, figuring out when it would pass in front of a distant star.

The KBO occulted, or passed in front of a bright background star, an event which lasted only 10 seconds. But in that short amount of time, the astronomers were able to determine the object’s size and albedo. Both of these results were surprising.

55636 was found to be smaller than previously thought, 300km in diameter, but it is highly reflective, meaning it is covered in fresh, white ice.

Most known KBOs have dark surfaces due to space weathering, dust accumulation and bombardment by cosmic rays, so 55636’s brightness implies it has an active resurfacing mechanism, or perhaps that in some cases, fresh water ice can persist for billions of years in the outer reaches of the Solar System.

One graph of the occultation from the Las Cumbres Observatory. Credit: Elliot, et al.

42 astronomers from 18 observatories located in Australia, New Zealand, South Africa, Mexico and the US were part of the observations, but because of weather and timing, only two observatories, both in Hawaii, were able to detect the occultation. Working with Wayne Rosing, Pasachoff coordinated the observations at the Las Cumbres Observatory Global Telescope Network located at Haleakala Crater on Maui, Hawaii, which made the best observations.

But Pasachoff told Universe Today that having two different angles of view to work with provided the ability to make quite precise measurements of the KBO.

“It was absolutely crucial to have the second observation site,” he said. “Without it, we
would not have known where on a round or elliptical body the chord, the line of occultation, passed and we could not have set an upper limit to the size of the body.”

A chord near the edge of a huge body can be vanishingly small, Pasachoff added, illustrating why they needed at least two chords.

Although the surfaces of other highly reflective bodies in the solar system, such as the dwarf planet Pluto and Saturn’s moon Enceladus, are continuously renewed with fresh ice from the condensation of atmospheric gases or by cryovolcanism that spews water instead of lava, 55636 is too small for these mechanisms to be at work.

“The surprising thing in a billion-year-old object that is so reflective is that it maintained or renewed its reflectivity,” said Pasachoff, “so possibilities include the darkening that we know takes place in the inner solar system is much less way out there; or the object renews its ice or frost from inside. We need new observations or more KBO’s with occultations, and we need more theoretical work.”

This was the first successful “planned” observation of a KBO using the stellar occultation method. In 2009 another team scoured through four and a half years of Hubble data to find on occultation of an extremely small KBO 975 meters (3,200 feet) across and a whopping 6.7 billion kilometers (4.2 billion miles) away.

For several years, Pasachoff and his team from Williams College have worked with Elliot and others from MIT, as well as Amanda Gulbis of the South African Astronomical Observatory to study Pluto by occultation. With careful measurements of a star’s brightness as Pluto hides or occults it, they have shown that Pluto’s atmosphere was slightly warming or expanding. A main goal now is to find out how the atmosphere is changing. This will be especially significant with the New Horizons spacecraft en route to Pluto.

Pasachoff said he knew 55636’s albedo would be bright, but was surprised how bright it was. The origins of this object is believed to come from a collision that occurred one billion years ago between one of the three known dwarf planets in the Kuiper Belt, Haumea and another object that caused Haumea’s icy mantle to break into a dozen or so smaller bodies, including 55636.

“Mike Brown (KBO and dwarf planet hunter from Caltech) told me last year, before the observations, that the object would be reflective since it is in the Haumea family, and Haumea itself has a high albedo,” Pasachoff said.

Pasachoff worked with Brown and his team last year in trying to capture the mutual occultations of transits of Haumea with its moon Namaka using the Palomar 5-meter telescope, but they weren’t successful in detecting the extremely small effect, given Haumea’s rapid rotation period.

Elliot used the occultation method to discover the rings of Uranus decades ago and continues to champion the method.

Pasachoff said the recent observation of 55636 was very rewarding. “It was an incredible observation, and I was very pleased to be part of it.” He said. “I am proud that all three of the graphs in the Nature article, and both of the successful observations, were arranged or made by our Williams College team.”

He added that any such observation includes at least these four elements: astrometric predictions, observations, reduction of data, interpretation.

“We were very fortunate and interested in being successful with observations,” Pasachoff said. “But it is important to note that Jim Elliot and his colleagues at MIT and Lowell Observatory have been working for years to refine the methods of predictions to get them accurate enough for this purpose. And this event was the first time that the predictions had been accurate enough to merit the all-out press of telescopes that we assembled. That we picked up the event, near the center of the prediction to boot, is a credit to the astrometry team.”

Note: This article was updated on 6/20.

The team’s paper was published in the journal Nature.

Sources: Williams College,(and email exchange with Jay Pasachoff), MIT, BBC, Nature