Do Comets Explain Mystery Star’s Bizarre Behavior?

The story of KIC 8462852 appears far from over. You’ll recall NASA’s Kepler mission had monitored the star for four years, observing two unusual incidents, in 2011 and 2013, when its light dimmed in dramatic, never-before-seen ways. Models to explain its erratic behavior were so lacking that some considered the possibility that alien megastructures built to capture sunlight around the host star (think Dyson Spheres) might be the cause.

But a search using the SETI Institute’s Allen Telescope Array for two weeks in October detected no significant radio signals or other signs of intelligent life emanating from the star’s vicinity. Something had passed in front of the star and blocked its light, but what?

The Spitzer Space Telescope observatory trails behind Earth as it orbits the Sun. Credit: NASA/JPL-Caltech
The Spitzer Space Telescope observatory trails behind Earth as it orbits the Sun. Credit: NASA/JPL-Caltech

Shattered comets and asteroids were also suggested as possible explanations — dust and ground-up rock would be at the right temperature to glow in the infrared — but Kepler could only observe in visible light where any debris would be invisible or swamped by the light of the star. So researchers looked through older observations made in 2010 by the  Wide Field Infrared Survey Explorer (WISE) space telescope. Unfortunately, WISE observed the star before the strange variations were seen and therefore before any putative dust-busting collisions.

Not to be stymied, astronomers next checked out the data from NASA’s Spitzer Space Telescope, which like WISE, is optimized for infrared light.  Spitzer just happened to observe KIC 8462852 much more recently in 2015.

“Spitzer has observed all of the hundreds of thousands of stars where Kepler hunted for planets, in the hope of finding infrared emission from circumstellar dust,” said Michael Werner, the Spitzer project scientist and the lead investigator of that particular Spitzer/Kepler observing program.

Comet Siding Spring (C/2007 Q3) as imaged in the infrared by the WISE space telescope. The images was taken January 10, 2010 when the comet was 2.5AU from the Sun. Credit: NASA/JPL-Caltech/UCLA
Comet Siding Spring (C/2007 Q3)  imaged in the infrared by the WISE space telescope in January 2010. Credit: NASA/JPL-Caltech/UCLA

I’d love to report that Spitzer tracked down glowing dust but no, it also came up empty-handed. This makes the idea of an asteroidal smash-up very unlikely, but not one involving comets according to Massimo Marengo of Iowa State University (Ames) who led the new study. Marengo proposes that cold comets are responsible. Picture a family of comets traveling on a very long, eccentric orbit around the star with a very large comet at the head of the pack responsible for the big fading seen by Kepler in 2011. Later, in 2013, the rest of the comet family, a band of various-sized fragments lagging behind, would have passed in front of the star and again blocked its light. By 2015, the comets would have moved even farther away on their long orbital journey, leaving no detectable infrared excess.

“This is a very strange star,” said Marengo. “It reminds me of when we first discovered pulsars. They were emitting odd signals nobody had ever seen before, and the first one discovered was named LGM-1 after ‘Little Green Men.'”

Clearly, more long-term observations are needed. And frankly, I’m still puzzled why cold or less active comets might still not be detected by their glowing dust. But let’s assume for a moment the the comet idea is correct. If so, we should expect to see similar dips in KIC 8462852’s light as the comet swarm swings around again.

SETI Institute Undertakes Search for Alien Signal from Kepler Star KIC 8462852

“We either caught something shortly after an event like two planets crashing together or alien intelligence,” said Dr. Gerald Harp, senior scientist at the SETI Institute in Mountain View, California, referring to the baffling light variations seen by the Kepler Observatory in the star KIC 8462852 .

And he and a team from the Institute are working hard at this moment to determine which of the two it is.

Gerald Harp of the SETI Institute is involved in gathering and studying data from the mysterious KIC Credit: SETI Institute
Gerald Harp of the SETI Institute is involved in gathering and studying data from the mysterious Kepler star. Credit: SETI Institute

Beginning last Friday (Oct. 16), the Institute’s Allen Telescope Array  (ATA) was taken off its normal survey schedule and instead focused on KIC 8462852, one of the 150,000-plus stars studied by NASA’s Kepler Mission to detect Earth-sized exoplanets orbiting distant stars.. The array of 42 dishes comprises a fully automated system that can run day and night, alerting staff whenever an unusual or interesting signal has been detected.

A swarm of comets has been proposed to explain the erratic and non-repeating light variations seen in the star located nearly 1,500 light years from Earth in the constellation Cygnus the Swan. But no one really seems satisfied with the explanation, and the chances that we’d catch a huge event like a comet breakup or planetary collision in the short time the star has been under observation seems unlikely. Collisions also generate dust. Warmed by the star, that dust would glow in infrared light, but none beyond what’s expected has been detected.

The Allen Telescope Array (ATA) is a “Large Number of Small Dishes” (LNSD) array designed to be highly effective for simultaneous surveys undertaken for SETI projects (Search for Extraterrestrial Intelligence) at centimeter wavelengths. Credit: Seth Shostak / SETI Institute
The Allen Telescope Array (ATA) is a “Large Number of Small Dishes” (LNSD) array designed to be highly effective for simultaneous surveys undertaken for SETI projects (Search for Extraterrestrial Intelligence) at centimeter wavelengths. Credit: Seth Shostak / SETI Institute

The ATA picks up radio frequencies in the microwave range from 1-10 gigahertz. For comparison, your kitchen microwave oven produces microwaves at around 2 gigahertz. Although Harp couldn’t reveal the team’s results yet — that will come soon when a paper is submitted in few weeks in a science journal — he did share the excitement of a the hunt in a phone interview Tuesday.

The array normally looks for a very narrow wave or specific frequency when hunting for potential “ET” signals. But not this time.

“This is a special target,” said Harp. “We’re using the scope to look at transmissions that would produce excess power over a range of wavelengths.” Perhaps from a potential alien power source? Maybe. Harp believes the star’s peculiar, a-periodic light variations seen by Kepler are “probably natural and definitely worth looking at” but considers an intelligent source a possibility, however remote.

This artist concept illustrates how two large, planet-sized objects could collide to create clumps of material in orbit around a star. The only problem is that they'd also create a lot of dust, which would glow in infrared light, something not seen around the Kepler star. Credit: NASA/JPL-Caltech/T. Pyle (SSC)
This artist concept illustrates how two large, planet-sized objects could collide to create clumps of material in orbit around a star. They’d also create a lot of dust, which would glow in infrared light, something not seen around the Kepler star. Credit: NASA/JPL-Caltech/T. Pyle (SSC)

During our conversation, he emphasized how special the light variations from the star were, adding how the “big gob” of material orbiting KIC (stands for Kepler Input Catalog) 8462852 is unusual in that it’s “clumped”. “We expect it to spread into a ring,” he said.

AAVSO chart of KIC 8462852. Click to go to the website to make your own customized version. Credit: AAVSO
AAVSO chart of KIC 8462852. Click to enlarge or go to the website to make your own customized version. Credit: AAVSO

Meanwhile, the American Association of Variable Star Observers (AAVSO) published an Alert Notice this week requesting amateurs and professional astronomers around the world to immediately begin observing KIC 8462852 now through the end of the current observing season. To locate the star, you can either use the charts provided in our previous story or go to the AAVSO site and type in KIC 8462852 in the “Pick a Star” box to create a chart of your own.

I’m a variable star observer, so naturally I thought of variables with irregular fluctuations in light when I first heard about this stellar mystery. Time to talk to an expert. According to Elizabeth Waagen, senior technical assistant for science operations at the AAVSO,  KIC 8462852 is different.

“Based on the information so far, it doesn’t seem to fit the criteria  for an irregular variable,” said Waagen in a phone interview this morning. “It’s doesn’t add up.”

She encouraged an open mind. “It’s a big puzzle, so we sent out the notice,” referring to the alert described above.

All quite exciting, and I’m as eager as you to see the published results on the signals, which Harp said would appear or link from the SETI website soon. Stay tuned …

What’s Orbiting KIC 8462852 – Shattered Comet or Alien Megastructure?

“Bizarre.” “Interesting.” “Giant transit”.  That were the reactions of Planet Hunters project volunteers when they got their first look at the light curve of the otherwise normal sun-like star KIC 8462852 nearly.

Of the more than 150,000 stars under constant observation during the four years of NASA’s primary Kepler Mission (2009-2013), this one stands alone for the inexplicable dips in its light. While almost certainly naturally-caused, some have suggested we consider other possibilities.

Kepler-11 is a sun-like star around which six planets orbit. At times, two or more planets pass in front of the star at once, as shown in this artist's conception of a simultaneous transit of three planets observed by NASA's Kepler spacecraft on Aug. 26, 2010. Image credit: NASA/Tim Pyle
Kepler-11, a sun-like star orbited by six planets. At times, two or more planets pass in front of the star at once, as shown in this artist’s conception of a simultaneous transit of three planets observed by the Kepler spacecraft on Aug. 26, 2010. During each pass or transit, the star’s light fades in a periodic way. 
Credit: NASA/Tim Pyle

You’ll recall that the orbiting Kepler observatory continuously monitored stars in a fixed field of view focused on the constellations Lyra and Cygnus hoping to catch  periodic dips in their light caused by transiting planets. If a drop was seen, more transits were observed to confirm the detection of a new exoplanet.

And catch it did. Kepler found 1,013 confirmed exoplanets in 440 star systems as of January 2015 with 3,199 unconfirmed candidates. Measuring the amount of light the planet temporarily “robbed” from its host star allowed astronomers to determine its diameter, while the length of time between transits yielded its orbital period.

Graph showing the big dip in brightness of KIC 8462852 around 800 days (center) followed after 1500 days whole series of dips of varying magnitude. Credit: Boyajian et. all
Graph showing the big dip in brightness of KIC 8462852 around 800 days (center) followed after 1500 days whole series of dips of varying magnitude up to 22%. The usual drop in light when an exoplanet transits its host star is a fraction of a percent. The star’s normal brightness has been set to “1.00” as a baseline. Credit: Boyajian et. all

Volunteers with the Planet Hunters project, one of many citizen science programs under the umbrella of Zooniverse, harness the power of the human eye to examine Kepler light curves (a graph of a star’s changing light intensity over time), looking for repeating patterns that might indicate orbiting planets. They were the first to meet up with the perplexing KIC 8462852.

dsafad
A detailed look at a small part of the star’s light curve reveals an unknown, regular variation of its light every 20 days. Superimposed on that is the star’s 0.88 day rotation period. Credit: Boyajian et. all

This magnitude +11.7 star in Cygnus, hotter and half again as big as the Sun, showed dips all over the place. Around Day 800 during Kepler’s run, it faded by 15% then resumed a steady brightness until Days 1510-1570, when it underwent a whole series of dips including one that dimmed the star by 22%. That’s huge! Consider that an exo-Earth blocks only a fraction of a percent of a star’s light; even a Jupiter-sized world, the norm among extrasolar planets, soaks up about a percent.

Exoplanets also show regular, repeatable light curves as they enter, cross and then exit the faces of their host stars. KIC 8462852’s dips are wildly a-periodic.

Could a giant comet breakup followed by those pieces crumbling into even smaller comets be the reason for KIC's erratic changes in brightness? Credit: NASA
Could a giant comet breakup and subsequent cascading breakups of those pieces be behind KIC 8462852’s erratic changes in brightness? Credit: NASA

Whatever’s causing the flickering can’t be a planet. With great care, the researchers ruled out many possibilities: instrumental errors, starspots (like sunspots but on other stars), dust rings seen around young, evolving stars (this is an older star) and pulsations that cover a star with light-sucking dust clouds.

What about a collision between two planets? That would generate lots of material along with huge clouds of dust that could easily choke off a star’s light in rapid and irregular fashion.

A great idea except that dust absorbs light from its host star, warms up and glows in infrared light. We should be able to see this “infrared excess” if it were there, but instead KIC 8462852 beams the expected amount of infrared for a star of its class and not a jot more. There’s also no evidence in data taken by NASA’s Wide-field Infrared Survey Explorer (WISE) several years previously that a dust-releasing collision happened around the star.

Our featured star shines around 12th magnitude in the constellation Cygnus the Swan (Northern Cross) high in the southern sky at nightfall this month. A 6-inch or larger telescope will easily show it. Use this map to get oriented and the map below to get there. Source: Stellarium
Our featured star shines at magnitude +11.7 in the constellation Cygnus the Swan (Northern Cross) high in the southern sky at nightfall this month. A 6-inch or larger telescope will easily show it. Use this map to get oriented and the map below to get there. Source: Stellarium

After examining the options, the researchers concluded the best fit might be a shattered comet that continued to fragment into a cascade of smaller comets. Pretty amazing scenario. There’s still dust to account for, but not as much as other scenarios would require.

Detailed map showing stars to around magnitude 12 with the Kepler star identified. It's located only a short distance northeast of the open cluster NGC 6886 in Cygnus. North is up. Source: Chris Marriott's SkyMap
Detailed map showing stars to around magnitude 12 with the Kepler star identified. It’s located only a short distance northeast of the open cluster NGC 6886 in Cygnus. North is up. Click to enlarge. Source: Chris Marriott’s SkyMap

Being fragile types, comets can crumble all by themselves especially when passing exceptionally near the Sun as sungrazing comets are wont to do in our own Solar System. Or a passing star could disturb the host star’s Oort comet cloud and unleash a barrage of comets into the inner stellar system. It so happens that a red dwarf star lies within about 1000 a.u. (1000 times Earth’s distance from the Sun) of KIC 8462852. No one knows yet whether the star orbits the Kepler star or happens to be passing by. Either way, it’s close enough to get involved in comet flinging.

So much for “natural” explanations. Tabetha Boyajian, a postdoc at Yale, who oversees the Planet Hunters and the lead author of the paper on KIC 8462852, asked Jason Wright, an assistant professor of astronomy at Penn State, what he thought of the light curves. “Crazy” came to mind as soon he set eyes on them, but the squiggles stirred a thought. Turns out Wright had been working on a paper about detecting transiting megastructures with Kepler.

There are Dyson rings and spheres and this, an illustration of a Dyson swarm. Could this or a variation of it be what we're detecting around KIC? Not likely, but a fun thought experiment. Credit: Wikipedia
There are Dyson rings and spheres and a Dyson swarm depicted here. Could this or a variation of it be what we’re seeing around KIC 8462852? Not likely, but a fun thought experiment. Credit: Wikipedia

In a recent blog, he writes: “The idea is that if advanced alien civilizations build planet-sized megastructures — solar panels, ring worlds, telescopes, beacons, whatever — Kepler might be able to distinguish them from planets.” Let’s assume our friendly aliens want to harness the energy of their home star. They might construct enormous solar panels by the millions and send them into orbit to beam starlight down to their planet’s surface. Physicist Freeman Dyson popularized the idea back in the 1960s. Remember the Dyson Sphere, a giant hypothetical structure built to encompass a star?

From our perspective, we might see the star flicker in irregular ways as the giant panels circled about it. To illustrate this point, Wright came up with a wonderful analogy:

“The analogy I have is watching the shadows on the blinds of people outside a window passing by. If one person is going around the block on a bicycle, their shadow will appear regularly in time and shape (like a regular transiting planet). But crowds of people ambling by — both directions, fast and slow, big and large — would not have any regularity about it at all.  The total light coming through the blinds might vary like — Tabby’s star.”

The Green Bank Telescope is the world's largest, fully-steerable telescope. The GBT's dish is 100-meters by 110-meters in size, covering 2.3 acres of space.
The Green Bank Telescope is the world’s largest, fully-steerable telescope. The GBT’s dish is 100-meters by 110-meters in size, covering 2.3 acres of space. Credit: NRAO/AUI/NSF

Even Wright admits that the “alien hypothesis” should be seen as a last resort. But to make sure no stone goes  unturned, Wright, Boyajian and several of the Planet Hunters put together a proposal to do a radio-SETI search with the Green Bank 100-meter telescope. In my opinion, this is science at its best. We have a difficult question to answer, so let’s use all the tools at our disposal to seek an answer.

Star with a mystery, KIC 8462852, photographed on Oct. 15, 2015. Credit: Gianluca Masi
KIC 8462852, photographed on Oct. 15, 2015. It’s an F3 V star (yellow-white dwarf) located about 1,480 light years from Earth. Credit: Gianluca Masi

In the end, it’s probably not an alien megastructure, just like the first pulsar signals weren’t sent by LGM-1 (Little Green Men). But whatever’s causing the dips, Boyajian wants astronomers to keep a close watch on KIC 8462852 to find out if and when its erratic light variations repeat. I love a mystery, but  answers are even better.