Micrometeorites Churn up the Surface of Europa. If you Want to Find Life, You’ll Need to dig Down a Meter or So

An artist's rendering of Europa and Jupiter based on images sent by visiting spacecraft. Credit: NASA/JPL-Caltech

In the coming decade, NASA and the ESA will be sending two dedicated missions that will explore Jupiter’s moon Europa. These missions are known as the Europa Clipper and the JUpiter ICy moons Explorer (JUICE) missions, which will fulfill a dream that has been decades in the making – searching for possible evidence of life inside Europa. Since the 1970s, astronomers have theorized that this satellite contains a warm-water ocean that could support life.

The case for life in Europa has only been bolstered thanks to multiple flybys and observation campaigns that have been mounted since. According to new research led by the University of Hawaii at Manoa, the best way to look for potential signs of life (aka. biosignatures) would be to analyze small impact craters on Europa’s surface. These patches of exposed subsurface ice could point the way towards life that might exist deeper in the moon’s interior.

Continue reading “Micrometeorites Churn up the Surface of Europa. If you Want to Find Life, You’ll Need to dig Down a Meter or So”

Juno Captures Pictures of Ganymede for the First Time

On July 5, 2016, NASA’s Juno spacecraft arrived around Jupiter, becoming the second mission in history to study the gas giant from orbit – the last being the Galileo spacecraft, which orbited Jupiter from 1995 to 2003. Since then, the spacecraft has gathered data on Jupiter’s atmosphere, composition, gravity field, and magnetic field in the hopes of learning more about how the planet formed and evolved.

In addition, the spacecraft has gathered some of the most breathtaking images ever taken of Jupiter and its system of moons. In fact, as the spacecraft was making another approach towards Jupiter on December 26th, 2019, it managed to capture the first infrared images of the moon Ganymede’s northern polar region. These images will inform future missions to this satellite, which could host life beneath its icy mantle.

Continue reading “Juno Captures Pictures of Ganymede for the First Time”

Europe’s Mission to Jupiter’s Moons Just Got its First Instrument

Southwest Research Institute’s Norm Pelletier prepares the Ultraviolet Spectrograph (UVS) for delivery and integration onto the European Space Agency’s JUICE spacecraft. As part of a 10-instrument payload to study Jupiter and its large moons, UVS will measure ultraviolet spectra that scientists will use to study the composition and structure of the atmospheres of these bodies and how they interact with Jupiter’s massive magnetosphere. Credit: SwRI

The space agencies of the world have some truly ambitious plans in mind for the coming decade. Alongside missions that will search for evidence for past (and maybe present) life on Mars, next-generation space telescopes, and the “return to the Moon”, there are missions will which will explore Jupiter’s moons for signs of extra-terrestrial life. These include the ESA’s JUpiter Icy Moon Explorer (JUICE), which will launch in 2022.

As part of the agency’s Cosmic Vision 2015-2025 program, this spacecraft will conduct detailed observations of Jupiter and three of its large moons – Ganymede, Callisto, and Europa – to see if they could indeed harbor life in their interiors. Late last month (Feb. 25th), the first instrument that will fly aboard JUICE and aid in these efforts was delivered and began the process of integration with the spacecraft.

Continue reading “Europe’s Mission to Jupiter’s Moons Just Got its First Instrument”

Swirly Southern Picture Of Jupiter Makes Us Want To Visit Right Now

A view the Cassini spacecraft took during its flyby of Jupiter's southern pole in 2000. Credit: NASA/JPL/Space Science Institute

Gimme a rocketship – we want to see what those bands are made of! This is a strange view of Jupiter, a familiar gas giant that humanity has sent several spacecraft to. This particular view, taken in 2000 and highlighted on the European Space Agency website recently, shows the southern hemisphere of the mighty planet.

The underneath glimpse came from the Cassini spacecraft while it was en route to Saturn. Lucky for researchers, at the time the Galileo Jupiter spacecraft was still in operation. But now that machine is long gone, leaving us to pine for a mission to Jupiter until another spacecraft gets there in 2016.

That spacecraft is called Juno and is a NASA spacecraft the agency sent aloft in August 2011. And here’s the cool thing; once it gets there, Juno is supposed to give us some insights into how the Solar System formed by looking at this particular planet.

Juno will repeatedly dive between the planet and its intense belts of charged particle radiation, coming only 5,000 kilometers (about 3,000 miles) from the cloud tops at closest approach. (NASA/JPL-Caltech)
Juno will repeatedly dive between the planet and its intense belts of charged particle radiation, coming only 5,000 kilometers (about 3,000 miles) from the cloud tops at closest approach. (NASA/JPL-Caltech)

“Underneath its dense cloud cover, Jupiter safeguards secrets to the fundamental processes and conditions that governed our Solar System during its formation. As our primary example of a giant planet, Jupiter can also provide critical knowledge for understanding the planetary systems being discovered around other stars,” NASA wrote on the spacecraft’s web page.

The spacecraft is supposed to look at the amount of water in Jupiter’s atmosphere (an ingredient of planet formation), its magnetic and gravitational fields and also its magnetic environment — including auroras.

Much further in the future (if the spacecraft development is approved all the way) will be a European mission called JUICE, for Jupiter Icy Moon Explorer.

Artist's impression of the Jupiter Icy Moons Explorer (JUICE) near Jupiter and one of its moons, Europa. Credit: ESA/AOES
Artist’s impression of the Jupiter Icy Moons Explorer (JUICE) near Jupiter and one of its moons, Europa. Credit: ESA/AOES

The mission will check out the planet and three huge moons, Ganymede, Callisto and Europa, to get a better look at those surfaces. It is strongly believed that these moons could have global oceans that may be suitable for life.

Earlier this month, the European Space Agency approved the implementation phase for JUICE, which means that designers now have approval to come up with plans for the spacecraft. But it’s not going to launch until 2022 and get to Jupiter until 2030, if the schedule holds.

Meanwhile, observations of Jupiter do continue from the ground. One huge finding this year came from the Hubble Space Telescope, which confirmed observations that the Great Red Spot is shrinking for reasons that are yet unknown.

Jupiter-Bound Spacecraft Takes A Small Step To Seek Habitable Worlds

Artist's impression of the Jupiter Icy Moons Explorer (JUICE) near Jupiter and one of its moons, Europa. Credit: ESA/AOES

It takes years of painstaking work to get a spacecraft off the ground. So when you have a spacecraft like JUICE (the Jupiter Icy Moons Explorer) set to launch in 2022, you need to back up about a decade to get things figured out. How will the spacecraft get there? What science instruments will it carry? What will the spacecraft look like and what systems will support its work?

JUICE just hit another milestone in its development a few days ago, when the European Space Agency gave the go-ahead for the “implementation phase” — the part where the spacecraft design begins to take shape. The major goal of the mission will be to better understand those moons around Jupiter that could be host to life.

The spacecraft will reach Jupiter’s system in 2030 and begin with observations of the mighty planet — the biggest in our Solar System — to learn more about the gas giant’s atmosphere, faint rings and magnetic environment. It also will be responsible for teaching us more about Europa (an icy world that could host a global ocean) and Callisto (a moon pockmarked with the most craters of anything in the Solar System.)

Its major departure from past missions, though, will come when JUICE enters orbit around Ganymede. This will the first time any spacecraft has circled an icy moon repeatedly; past views of the moon have only come through flybys by the passing-through spacecraft (such as Pioneer and Voyager) and the Galileo mission, which stuck around Jupiter’s system in the 1990s and early 2000s.

Ganymede
Ganymede Credit: NASA

With Ganymede, another moon thought to host a global ocean, JUICE will examine its surface and insides. What makes the moon unique in our neighborhood is its ability to create its own magnetic field, which creates interesting effects when it interacts with Jupiter’s intense magnetic environment.

“Jupiter’s diverse Galilean moons – volcanic Io, icy Europa and rock-ice Ganymede and Callisto – make the Jovian system a miniature Solar System in its own right,” the European Space Agency stated when the mission was selected in 2012.

“With Europa, Ganymede and Callisto all thought to host internal oceans, the mission will study the moons as potential habitats for life, addressing two key themes of cosmic vision: what are the conditions for planet formation and the emergence of life, and how does the Solar System work?”

JUICE is one of several major spacecraft ESA plans to launch in the next couple of decades. You can read more about the other Cosmic Vision candidates at this ESA website.

Source: European Space Agency