Saturn’s Mysterious Hexagon Behaves Like Earth’s Ozone Hole

At Saturn, NASA's Cassini spacecraft snapped pictures showing a high-resolution view of a hexagon-shaped jet stream. Credit: NASA/JPL-Caltech/SSI/Hampton

A raging hurricane is creating a “suck zone” at Saturn’s north pole. The handy Cassini spacecraft recently captured a bunch of images of the six-sided jet stream surrounding the storm, which mission managers then put together into an awesome animation showing the wind currents shifting. (You can see the animation below the jump.)

The feature is pretty in a picture, but NASA has a special interest because there is nothing else like this anywhere in our solar system, the agency stated. The immense storm stretches 20,000 miles (30,000 kilometers) across with winds whipping in its jet stream at 200 miles per hour (322 kilometers per hour). And despite all the turbulence, the storm is staying put at the north pole for reasons scientists are still trying to understand.

“The hexagon is just a current of air, and weather features out there that share similarities to this are notoriously turbulent and unstable,” said Andrew Ingersoll, a Cassini imaging team member at the California Institute of Technology in Pasadena. “A hurricane on Earth typically lasts a week, but this has been here for decades — and who knows — maybe centuries.”

An animation of Cassini Saturn images showing a hexagonal jet stream surrounding a storm at the north pole. Credit: NASA/JPL-Caltech/SSI/Hampton University
An animation of Cassini Saturn images showing a hexagonal jet stream surrounding a storm at the north pole. Credit: NASA/JPL-Caltech/SSI/Hampton University

Cassini has been orbiting Saturn since 2004, but it’s only since last year that it’s been able to peer at the hexagon with much success. That’s because the angle of the sun is finally favorable to peer at the storm. This has allowed scientists, for example, to look at the types of particles inside. They discovered that the jet stream is a sort of barrier around the storm, delineating a location with a lot of small haze particles and few large haze particles. (It’s the opposite outside of the jet stream). Scientists said it looks like the Antarctic ozone hole on Earth.

“The Antarctic ozone hole forms within a region enclosed by a jet stream with similarities to the hexagon,” NASA stated.

“Wintertime conditions enable ozone-destroying chemical processes to occur, and the jet stream prevents a resupply of ozone from the outside. At Saturn, large aerosols cannot cross into the hexagonal jet stream from outside, and large aerosol particles are created when sunlight shines on the atmosphere. Only recently, with the start of Saturn’s northern spring in August 2009, did sunlight begin bathing the planet’s northern hemisphere.”

Should Cassini have enough funding to function for a few more years, scientists are eager to watch as Saturn gets to its summer solstice in 2017 and the lighting gets even better around the north pole.

NASA also held an interesting Google+ Hangout yesterday (Nov. 4) about Saturn and the Cassini mission that featured Carolyn Porco, director of the Cassini Imaging Team and the Cassini Imaging Central Laboratory for Operations (CICLOPS). The whole video below is worth a watch, but here’s a little tidbit to let you know some of what was talked about:

“If you took all the mass of Saturn’s rings and recomposed it into a moon, it would be no bigger than Enceladus, so it’s a big spectacle coming from little mass,” Porco said. “The main rings are very thin, only about 30 feet [9 meters] thick, no bigger than about 2 stories in a modern day building. Despite the fact they are about 280,000 km [174,000 miles] across.”

Psychedelics in the Sky: NASA Launches 5 Rockets in 5 Minutes

Sounding rockets released chemical tracers that created strange milky, white clouds at the edge of space. Credit: NASA


After several days of delays due to weather and technical issues, NASA has now successfully launched five suborbital sounding rockets in five minutes from the Wallops Flight Facility in Virginia as part of a study of the upper level jet stream.

The first rocket was launched at 4:58 a.m. EDT and each subsequent rocket was launched 80 seconds apart.

Each of the rockets released a chemical tracer that created psychedelic-looking clouds at the edge of space, which were reported to be seen from as far south as Wilmington, N.C.; west to Charlestown, W. Va.; and north to Buffalo, N.Y.

The above image was taken from one of the official viewing sites by a NASA photographer; below is an image taken by John Anton from New Jersey, as well as more images from NASA, the video showing all the launches and time-lapse video from twolf1 on Vimeo.

Chemical tracers from the ATREX mission as seen from New Jersey in the US. Credit and copyright: John Anton.

The Anomalous Transport Rocket Experiment (ATREX) is a Heliophysics sounding rocket mission that gathered information to better understand the process responsible for the high-altitude jet stream located 95-105 km (60 to 65 miles) above the surface of the Earth.

Sounding rockets released chemical tracers that created strange milky, white clouds at the edge of space. Credit: NASA Wallops

Scientists from the mission had viewing sites at three locations: the launch site in Virginia, the Rutgers Marine Field Station in Tuckerton, N.J., and the U.S. Army Corps of Engineers at Duck, N.C. Clear skies at all three locations were a prerequisite for the rockets to be launched.

The sounding rockets were two Terrier-Improved Malemutes , two Terrier-Improved Orions and one Terrier-Oriole.

Chemical tracers from ATREX rockets launched from NASA’s Wallops Flight Facility in Virginia from twolf1 on Vimeo.

The map of the mid-Atlantic region of the U.S. shows the projected area where the rockets may be visible while the motors are burning through flight. It also shows the flight profile of each of the five rockets. Credit: NASA/Wallops

The high-altitude jet stream is higher than the one commonly reported in weather forecasts. The winds found in this upper jet stream typically have speeds of 320 to well over 480 km/hr (200 to over 300 mph) and create rapid transport from the Earth’s mid latitudes to the polar regions. This jet stream is located in the same region where strong electrical currents occur in the ionosphere. It is therefore a region with a lot of electrical turbulence, of the type that can adversely affect satellite and radio communications.

Not only did the rockets release the chemical tracers to allow scientists and the public to “see” the winds in space, but two of the rockets had instrumented payloads to measure the pressure and temperature in the atmosphere at the height of the high-speed winds. NASA will release more information on the outcome of the experiment after scientists have had time to review the data.

See a slideshow of images of the launches on Flickr from NASA