Communicating Across the Cosmos 4: The Quest for a Rosetta Stone

On television and in the movies, it’s so easy. Aliens almost always speak English (at least in America they do). If it’s explained at all, we are typically told that they learned it by intercepting communications with our astronauts, or tapping into our television broadcasts. A universal translator device instantly abolishes communication difficulties. Hollywood aliens are, of course, human beings in costumes (these days augmented by computer graphics). They are equipped, as are we all, with a human brain, a human larynx, and human vocal cords; all singular products of the distinctive evolutionary history of our species.

Real extraterrestrials, if they exist, will be the product of a different evolutionary history, played out on another world.

They will know no human language, and be unfamiliar with the typical activities of human beings. Here on Earth no archeologist has ever deciphered an ancient script without knowing the language it corresponds to, even though such scripts deal with recognizable human activities. How could we ever devise a message that aliens could understand? Could we ever understand a message they sent to us? Communicating with alien minds may be one of the most daunting challenges the human intellect has ever faced.

In mid-November, the SETI Institute in Mountain View, California sponsored an academic conference on the problem interstellar communication ‘Communicating across the Cosmos’. The conference drew 17 speakers from a variety of disciplines, including linguistics, anthropology, archeology, mathematics, cognitive science, radio astronomy, and art. In this final installment, we will search for clues to a solution to the daunting problem of making ourselves understood to an extraterrestrial civilization.

Conference presenter and archeologist Paul Wason believes that the history of archeology provides an important lesson for how we might devise a message that can be deciphered by extraterrestrials. In the early 19th century the French archeologist Jean-Francois Champollion solved one of the great riddles of his field by deciphering Egyptian hieroglyphics. The critical clue was provided by an artifact discovered in 1799 in an Egyptian town that Europeans called Rosetta. It became known as the Rosetta stone.

The stone contained the same inscription in three different scripts. One of them was Egyptian hieroglyphics, and another was Greek, which Champollion knew how to read. Champollion used the Greek to decipher the hieroglyphics. Could we use the same strategy to create a cosmic Rosetta stone? Like Wason, Carl Sagan also grasped the importance of the Rosetta stone, and discussed it extensively in his 1980’s book and television series Cosmos. To create a cosmic Rosetta stone, we would need a language to stand in the role of Greek. It would need to be known both to us, and to the aliens. Could there possibly be such a thing?

Many mathematicians and physical scientists involved in SETI believe that mathematical and physical concepts could play the needed role. According to mathematician and conference speaker Carl DeVito, the natural numbers (0, 1, 2, 3 …) are useful to humans in dealing with the cyclical processes that are a everywhere in nature, and probably arise universally in the minds of intelligent beings. Astronomers have strong evidence that the laws of physics and chemistry worked out in laboratories here on Earth hold everywhere in the universe. That being the case, they hope that humans and aliens share a common understanding of basic concepts in these fields. If this is so, then such concepts might play the same role that Greek did for Champollion. SETI pioneers Carl Sagan and Frank Drake, along with their collaborators, employed a rudimentary version of this strategy when they constructed the message encoded on the phonographic record launched into space in 1977 aboard the Voyager 1 and 2 spacecraft. These spacecraft hurtled into interstellar space following the completion of their missions to explore the outer solar system.

An image encoded on the phonographic record carried aboard Voyager 1 and 2, intended to communicate how humans symbolize basic mathematical concepts. The left side depicts how humans, in western culture, represent the natural numbers using binary code and Arabic numerals. The vertical lines indicate binary ‘1’, and the horizontal lines binary ‘0’. On the right, additional numerals are given, and the use of scientific notation, and the operations of addition, multiplication, and division are depicted.
An image encoded on the phonographic record carried aboard Voyager 1 and 2, intended to communicate how humans symbolize basic mathematical concepts. The left side depicts how humans, in western culture, represent the natural numbers using binary code and Arabic numerals. The vertical lines indicate binary ‘1’, and the horizontal lines binary ‘0’. On the right, additional numerals are given, and the use of scientific notation, and the operations of addition, multiplication, and division are depicted. Credit: Frank Drake
An image encoded on the Voyager record intended to communicate standards of time, mass, and length to an extraterrestrial viewer, using basic concepts in physics encoded symbolically.  In the upper right corner, each circle symbolizes a hydrogen atom.  The diagram as a whole symbolizes a transition of the spin state of the electron.  This transition involves the emission of a microwave radio wave of wavelength 21 centimeters, which is symbolized on the right side of the diagram.  Radio emissions produced by this transition occurring in clouds of hydrogen gas in interstellar space are well known to radio astronomers.  The wavelength is used as the standard of length (1 L).  The time that this transition takes to occur is used as the unit of time (1t) and the mass of a hydrogen atom (1 M) is used as the standard of mass.  Various units of measurement used by humans are then defined in terms of these standards.  The units are then used throughout the pictorial portion of the message to indicate masses, lengths and times.
An image encoded on the Voyager record intended to communicate standards of time, mass, and length to an extraterrestrial viewer, using basic concepts in physics encoded symbolically. In the upper right corner, each circle symbolizes a hydrogen atom. The diagram as a whole symbolizes a transition of the spin state of the electron. This transition involves the emission of a microwave radio wave of wavelength 21 centimeters, which is symbolized on the right side of the diagram. Radio emissions produced by this transition occurring in clouds of hydrogen gas in interstellar space are well known to radio astronomers. The wavelength is used as the standard of length (1 L). The time that this transition takes to occur is used as the unit of time (1t) and the mass of a hydrogen atom (1 M) is used as the standard of mass. Various units of measurement used by humans are then defined in terms of these standards. The units are then used throughout the pictorial portion of the message to indicate masses, lengths and times. Credit: Frank Drake

Sagan, Drake, and their collaborators first used symbols in an attempt to communicate how humans represent the natural numbers using binary and base ten numerals. They used another set of symbols to depict some properties of the hydrogen atom, which they used to establish standards of distance and time. The distance and time standards were used repeatedly throughout the digital image portion of the message to specify the sizes and time scales depicted. The Voyager record included a greeting from then President Carter encoded as English text. Sagan, Drake, and their collaborators didn’t even attempt the monumental, and perhaps impossible, task of explaining President Carter’s text statement using their Rosetta stone.

Much like Wason and Sagan, computer scientist and conference presenter Kim Binsted, felt that the solution to interstellar communication lies in constructing a pidgin, a simplified version of a language developed to communicate between groups that share no language in common. She was doubtful though, that a cosmic Rosetta stone based on physics and math would let humans and aliens communicate about anything other than physics and math. It might never, for example, provide a way to convey the President’s good wishes. The hieroglyphics of the Rosetta stone were decipherable, in part, because they described the familiar human activities of an Egyptian pharaoh. Humans are clueless about what sorts of activities aliens typically engage in, and aliens are equally clueless about us. It’s hard to see how a Rosetta stone based on physics could bridge this sort of gap.

Philosophers Nicholas Rescher and Andre Kukla, neither of whom presented at the conference, have raised a more fundamental objection. They question whether extraterrestrials would use the same concepts to understand the physical and chemical world that we do. The concepts that modern western science uses to understand the physical world surely reflect the structure of that world. But they also reflect the history of our culture and the structure of our minds. Since aliens would differ from humans on both counts, it’s at least possible that their physical, and even their mathematical concepts might be different from ours. If that’s so, then physics can’t play the role that Greek did for Champollion. Every path forward is full of unknowns and difficulties, and Kim Binsted doubts a solution is possible.

There is a glimmering of hope for another kind of Rosetta stone based on another sort of “Greek”. Given the central role that visual images played in the Voyager message, it’s surprising that image based communication strategies didn’t receive greater emphasis at the conference. It’s true that here on Earth; animals have evolved a wide variety of non-visual ways to sense their surroundings. Some fishes can sense their environments by generating and detecting electric fields in the water. Many fish can use fields of water flow around their bodies to detect nearby objects. Bats, along with dolphins and whales, have evolved a sonar system, emitting sounds and analyzing their returning echoes. Scorpions can sense ground vibrations, elephants can hear sounds below the range of human hearing, and dogs have a remarkably acute sense of smell, to name just a few examples. Still, almost every Earthly animal has eyes of some sort.

Earthly evolution has invented vision several times, in different animal lineages. Vision is especially important for larger animals that live on land. This is because larger bodies can make larger eyes and larger eyes can give sharper vision and better light gathering abilities. Land environments are typically better lit than aquatic ones. Birds and mammals are the Earthly animals with the biggest and most sophisticated brains, and they also have the most acute vision.

Are alien environments likely to be well lit? Exoplanet hunters have focused their efforts on finding planets like the Earth, rocky terrestrial planets at the right distance from their star for temperatures to be in the range where water is a liquid. They have shown us that such worlds are fairly commonplace in the cosmos. The daytime surfaces of these exoplanets are likely to be flooded with visible light, just as is Earth. This light may be necessary for life on such a world, because most life on Earth depends on the energy of sunlight as trapped by green plants. For large, land dwelling animals in this kind of environment, vision provides more information, at a distance, than any other sense can. Since it evolved numerous times on Earth, it’s likely to do so elsewhere as well.

The eye of a squid is remarkably similar to our own.  Squids are part of a group of animals called molluscs, which also includes slugs, snails, and shellfish.  Molluscs are very distantly related to the vertebrates (animals with backbones, a group which includes humans).  The most recent common ancestor of molluscs and vertebrates was a simple wormlike creature that lived more than 600 million years ago.  The two groups have followed an independent course of evolution ever since.    The fact that molluscs evolved complex brains and bodies along a different evolutionary path than vertebrates makes them a good model for understanding extraterrestrials.  One group of molluscs, the cephalopods, a group which includes squids, octopuses, and cuttlefish, have evolved the largest and most complex brains of any invertebrate.  Despite their separate evolutionary origin, the eyes of cephalopods are remarkably similar to vertebrate eyes, a phenomenon known as convergent evolution.  Evolution solved similar problems in similar ways.    These similarities suggest the possible usefulness of images in interstellar messages.
With a lens at the front and a sheet of light sensing cells at the back, the eye of a squid is remarkably similar to our own. Squids are part of a group of animals called molluscs, which also includes slugs, snails, and shellfish. Molluscs are very distantly related to the vertebrates (animals with backbones, a group which includes humans). The most recent common ancestor of molluscs and vertebrates was a simple worm-like creature that lived more than 600 million years ago. The two groups have followed an independent course of evolution ever since. The fact that molluscs evolved complex brains and bodies along a different evolutionary path than vertebrates makes them a good model for understanding some of the ways in which extraterrestrials, with an entirely separate evolutionary history, might be different from or similar to us. One group of molluscs, the cephalopods, a group which includes squids, octopuses, and cuttlefish, have evolved the largest and most complex brains of any invertebrates. Despite their separate evolutionary origin, the eyes of cephalopods are remarkably similar to vertebrate eyes, a phenomenon known as convergent evolution. Evolution solved similar problems in similar ways. Perhaps, even on another planet, evolution solves similar problems in similar ways. If aliens, like cephalopods, have some visual similarities to us, then visual images may be useful in interstellar messages. Credit: Carl Chun Die Cephaloden

The human visual system gathers information about a three dimensional world of objects and surfaces, partly by using motion cues. We have the ability to represent that world in two dimensions, using images. Kim Binsted worried that an alien visual system might not be capable of making sense of pictures made by humans. This worry was a potent one for the stick figures and line drawings that played such a prominent role in the pioneering interstellar messages of the 70’s. Those kinds of depictions use abstract visual conventions that an alien viewer might find impossible to figure out. Today, though, we needn’t worry about stick figures, because the information revolution gives us the ability to send high definition video. Still, we can’t be sure what an alien visual system would make of imagery encoded with the human visual system in mind.

Video imagery may provide a promising complement or alternative to the abstractions of physics and chemistry as the “Greek” for a cosmic Rosetta stone. If the aliens live on a planet like Earth, with liquid water on its surface, then we will share a mutual familiarity with water’s many manifestations. Just like us, aliens will have seen rain and snow, oceans, rivers, lakes, ponds, clouds, fog, and rainbows. If they have a sense of hearing, over a range of sound frequencies at least somewhat similar to ours, they will have heard waves crashing on beaches, rain hitting the ground, gurgling brooks, and the splash of a pebble dropped into a pond. When the senses work together to confirm one another, the certainty of perceptual recognition is even greater.

An audio-video movie depicting the mutually familiar phenomena of water could be just the bridge we need to cross the gulf of mutual incomprehension. This splashy, gurgling “Greek” could be the key to helping the aliens understand our audio-visual and still images, and ultimately, our symbols. As with the Voyager record, a simpler symbol system would first be needed to communicate to the aliens about how to view and listen to the presentation. That might be a big stumbling block. In the case of Voyager, a stylus head for playing the record was included on the spacecraft, which made it simpler to explain how to play it. A Rosetta stone that led the extraterrestrials to an understanding of our images could provide a means of communication extending well beyond the topics of physics, chemistry, and math. Several conference participants felt that imagery might help to convey things about human altruism, cooperation, morality, and aesthetic sensibilities.

The main message of the ‘Communicating across the Cosmos’ conference is a recognition of just how hard the problem of making ourselves understood to aliens will be. Kim Binsted ended her talk on a faint note of optimism. Even if all else fails, she supposed, there is something we can still communicate to the aliens. She showed a slide of her home doorbell. When it rings, she said, it conveys the message that someone is there, and where they are. It shows intent to communicate, and a benign willingness to reveal one’s presence. Even if it can’t be interpreted, an interstellar message conveys the information that a doorbell conveys. That message, the message that someone is there, would still be of monumental importance.

Even an interstellar message that can't be deciphered still tells us what a doorbell tells us:  that someone is there.
Even an interstellar message that can’t be deciphered still tells us what a doorbell tells us: that someone is there. Credit: Jim Kuhn

Previous articles in this series:
Part 1: Shouting into the Darkness
Part 2: Petabytes from the Stars
Part 3: Bridging the Vast Gulf

References and Further Reading:

Communicating across the Cosmos: How can we make ourselves understood by other civilizations in the galaxy (2014), SETI Institute Conference Website.

F. Cain (2013) How Could We Find Aliens? The Search for Extraterrestrial Intelligence (SETI), Universe Today.

F. Cain (2013) Where Are All The Aliens? The Fermi Paradox, Universe Today.

A. Kukla (2010) Extraterrestrials: A Philosophical Perspective, Rowman and Littlefield Publishers Inc. Plymouth, UK.

M. F. Land and D-E. Nilsson (2002), Animal Eyes, Oxford University Press.

N. Rescher (1985) Extraterrestrial Science, in Extraterrestrials: Science and Alien Intelligence, Edited by E. Regis, Cambridge University Press, Cambridge, UK.

C. Sagan, F. D. Drake, A. Druyan, T. Ferris, J. Lomberg, L. S. Sagan, (1978) Murmurs of Earth: The Voyager Interstellar Record. Random House, New York.

C. Sagan (1980) Cosmos, Random House, New York.

J. J. Vitti (2013) Cephalopod cognition in an evolutionary context: Implications for ethology, Biosemiotics, 6:393-401.

Communicating Across the Cosmos, Part 3: Bridging the Vast Gulf

If extraterrestrial civilizations exist, the nearest is probably at least hundreds or thousands of light years away. Still, the greatest gulf that we will have to bridge to communicate with extraterrestrials is not such distances, but the gulf between human and alien minds.

In mid-November, the SETI Institute in Mountain View, California sponsored an academic conference on interstellar communication, “Communicating across the Cosmos“. The conference drew 17 speakers from a variety of disciplines, including linguistics, anthropology, archeology, mathematics, cognitive science, radio astronomy, and art. In this installment we will explore some of the formidable difficulties that humans and extraterrestrials might face in constructing mutually comprehensible interstellar messages.

Optical PAyload for Lasercomm Science (OPALS) Flight System, the first laser communication from space. Credit: NASA/JPL-Caltech.
Optical PAyload for Lasercomm Science (OPALS) Flight System, the first laser communication from space. Credit: NASA/JPL-Caltech.

If we knew where they were, and we wanted to, the information revolution has given us the capability to send an extraterrestrial civilization a truly vast amount of information. According to SETI Institute radio astronomer Seth Shostak, with broadband microwave radio we could transmit the Library of Congress, or the contents of the World Wide Web in 3 days; with broadband optical (a laser beam for space transmission) we could transmit this same amount of information in 20 minutes. This transmission would, of course, take decades or centuries to cross the light years and reach its destination. These truly remarkable capabilities give us the ability to send almost any message we want to the extraterrestrials. But transmitting capabilities aren’t the hard part of the problem. If the aliens can’t interpret it, the entire content of the World Wide Web is just a mountain of gibberish.

Many conference participants felt that the problems involved in devising a message that could be understood by a non-human mind were extremely formidable, and quite possibly insurmountable.

Having its own separate origin, extraterrestrial life could be different from Earthly life all the way down to its biochemical foundations. The vast diversity of life on Earth gives us little reason to think that aliens will look like us. Given the different conditions of another planet, and the contingencies of a different history, evolution will have produced a different set of results. For interstellar messaging to be possible at all, these results must include an alien creature capable of language, culture, and tool-making. But if these abilities are founded on a different biology and different perceptual systems, they might differ from their human counterparts in ways that we would find hard to even imagine. Looking to our own possible future development, we can’t even be sure that extraterrestrials will be biological creatures. They might be intelligent machines.

According to cognitive scientist Dominique Lestel, who presented at the conference, understanding extraterrestrials poses an unprecedented set of problems. We face all of the problems that ethologists (scientists who study animal behavior) face when they study perception and signaling in other animal species. These are compounded with all of the problems that ethnologists face when they study other human cultures. Lestel worries that humans might not be smart enough to do it. He wasn’t alone in that opinion.

Explanation of the symbols on the cover of the Voyager record Credit: NASA JPL
Explanation of the symbols on the cover of the Voyager record. Credit: NASA JPL

Linguist and conference presenter Sheri-Wells Jensen said that humans have created more than 7,000 different spoken and signed languages. No one knows whether all human languages sprung from a single instance of the invention of language or whether several human groups invented language independently. Given the ease with which children learn a language, many linguists think that our brain has a specialized language “module” underlying the “universal” grammar of human languages. These special features of the human brain might pose a formidable barrier to learning the language of a creature with a different brain produced by a different evolutionary history. An alien language might make demands on our short term memory or other cognitive abilities that humans would find impossible to meet.

When human beings talk to one another, they rely on a system of mutually understood conventions. Often gestures and body language are essential to conveying meaning. Conference presenter Klara Anna Capova, a cultural anthropologist, noted that interstellar messaging poses unique problems because the conventions to be followed in the message can’t be mutually arranged. We must formulate them ourselves, without knowing anything about the recipients. The intended recipients are distant in both time and space. The finite speed of light ensures that query and response will be separated by decades or centuries. With so little to go on, the message will inevitably reflect our cultural biases and motives. In 1962, the Soviet Union transmitted a message towards the planet Venus. It was in Morse code, and consisted of the Cyrillic characters “Lenin”, “CCCP” (USSR), and “MIR” (the Russian word for “peace”). But the posited Venusians couldn’t possibly have known the conventions of Morse code, the Cyrillic alphabet, human names, countries, or possible relationships between them, no matter how intimately familiar these things would have seemed to the Soviets. Whether they are meant to build national prestige, sell a product, or cause humans to think deeply about their place in the universe, interstellar messages play to a human audience.

Given the long timescales involved in interstellar messaging, many conference participants noted the parallels with archeology. Archeologists have learned quite a lot about past human cultures by studying the artifacts and symbols they have left for us. Still, archeological methodologies have their limits. According to conference presenter and archeologist Paul Wason, these limits have much to teach us about interstellar messaging. Certain meanings are accessible to archeological analysis and others aren’t, because we lack the contextual knowledge needed to interpret them. Neolithic cave paintings speak to modern investigators about the skill and abilities of the painters. But, because we don’t have the needed contextual knowledge, they don’t tell us what the paintings meant to their creators.

To interpret symbols used in the past, we need to know the conventions that related the symbols to the things they symbolized. Linguistic symbols pose special problems. To understand them, we need to know two different sets of conventions. First, we need to know the conventions that relate the script to the words of the spoken language. Second, we need to know how the words of the spoken language relate to the things and situations it refers to. It is a sobering thought for would-be exolinguists that no one has ever succeeded in deciphering an ancient script without knowing the language it was written in.

What does all this tell us about our fledgling attempts to devise messages for aliens? The phonograph record carried on the Voyager 1 and 2 spacecraft includes a moving message from then President Carter, encoded as English text. It reads in part: “We hope someday, having solved the problems we face, to join a community of galactic civilizations. This record represents our hope and our determination, and our good will in a vast and awesome universe.”

Human archeologists have never deciphered linear A, the writing system of the ancient Minoan civilization, due to its apparent lack of association with any known language. Unfortunately, since extraterrestrials likewise lack contextual knowledge of any human language, it is almost certain that they could never discern the meaning of President Carter’s text. The team that developed the Voyager message, which included astronomers and SETI pioneers Carl Sagan and Frank Drake, were well aware of the problem. Carter was, most likely, made aware. Interstellar messages play to a human audience.

An inscription written around the inner surface of a cup in Linear A, a script used by the Minoan civilization that has never been deciphered.  Credit: Sir Arthur Evans, Scripta Minoa: The Written Documents of Minoan Crete
An inscription written around the inner surface of a cup in Linear A, a script used by the Minoan civilization that has never been deciphered. Credit: Sir Arthur Evans, Scripta Minoa: The Written Documents of Minoan Crete

Is it possible for us to do better? Some off-beat ideas were proposed. Both astronomer Seth Shostak and designer Marek Kultys thought we might consider sending the sequence of the human genome. This idea was quickly shot down by a comment from the audience. Why send them a key, they said, if the aliens don’t have a lock. The metaphor is apt. DNA can only do its job as a constituent part of a living cell. Reading and implementing the genetic code involves numerous highly specialized enzymes and other cellular parts. Even if alien biochemistry and cell structure are generally similar to their Earthly counterparts, there are many features of Earthly biochemistry that appear to be quirky products of the history of life on Earth. The probability that they would repeat themselves precisely on another world are, for all practical purposes, nil. Without the context of an Earthly cell, the sequence of the human genome would be meaningless gibberish.

In the twenty first century, our ability to transmit and process information has become astounding, but we still don’t know how information conveys meaning. Is there even a glimmering of a hope that we can reach beyond the limitations of our humanity to convey meaning to an alien mind? In the final installment of this report, we’ll consider some possibilities.

Previous articles in this series:
Part 1: Shouting into the Darkness
Part 2: Petabytes from the Stars

References and further reading:

Communicating across the Cosmos, How can we make ourselves understood by other civilizations in the galaxy?, SETI Institute

E. Howell (2014) How Do Aliens Think? We Need to Learn About Their Biology First, Analyst Argues. Universe Today.

J. Minor (2014) Will We Find Alien Life in 20 Years? You can bet on it. Universe Today.

C. Sagan, F. D. Drake, A. Druyan, T. Ferris, J. Lomberg, L. S. Sagan, (1978) Murmurs of Earth: The Voyager Interstellar Record. Random House, New York.

Communicating Across the Cosmos, Part 1: Shouting into the Darkness

Over the last 20 years, astronomers have discovered several thousand planets orbiting other stars. We now know that potentially habitable Earth-like planets are abundant in the cosmos. Such findings lend a new plausibility to the idea that intelligent life might exist on other worlds. Suppose that SETI (Search for Extraterrestrial Intelligence) researchers succeed in their quest to find a message from a distant exoplanet. How much information can we hope to receive or send? Can we hope to decipher its meaning? Can humans compose interstellar messages that are comprehensible to alien minds?

Such concerns were the topic of a two day academic conference on interstellar messages held at the SETI Institute in Mountain View, California; ‘Communicating across the Cosmos’. The conference drew 17 speakers from a wide variety of disciplines, including linguistics, anthropology, archeology, mathematics, cognitive science, philosophy, radio astronomy, and art. This article is the first of a series of installments about the conference. Today, we’ll explore the ways in which our society is already sending messages to extraterrestrial civilizations, both accidentally and on purpose.

Sending radio messages over sizable interstellar distances is feasible with present day technology. According to SETI Institute radio astronomer Seth Shostak, who presented at the conference, we are already — by accident — constantly signaling our presence to any extraterrestrial astronomers that might exist in our neighborhood of the galaxy. Some radio signals intended for domestic uses leak into space. The most powerful come from radars used for military purposes, air traffic control, and weather forecasting. Because these radars sweep across broad swaths of the sky, their signals travel out into space in many directions.

With radio telescopes no more sensitive than those astronomers on Earth use today, extraterrestrials out to distances of tens of light years could detect them and figure out that they were artificial. The Arecibo radar telescope in Puerto Rico is designed specifically to send a narrow beam of radio waves into space, usually to bounce them off celestial bodies and learn about their surfaces. For a receiver within its beam, it could be detected hundreds of light-years away.

FM radio and television broadcasts also leak out into space, but they are weaker and couldn’t be detected more than about one tenth of a light year away with present day human technology. This is quite a bit less than the distance to the nearest star. The size and sensitivity of radio telescopes is progressing rapidly. An alien civilization just a few centuries more advanced than us in radio technology could detect even these weak signals over vast distances in the galaxy. As our signals spread outward at the speed of light, they will reach progressively larger numbers of stars and planets, any one of which might be home to ETI. If they really are out there, they are likely to find us eventually.

Humans have been fascinated with formulating messages for extraterrestrials for a surprisingly long time. Eighteenth and nineteenth century scientists drew up proposals to make huge fire pits or plantings in the shapes of geometric figures that they hoped would be visible in the telescopes of the inhabitants of neighboring worlds. In the early days of radio, attempts were made to contact Mars and Venus.

As prospects for intelligent life within the solar system dimmed, attention turned to the stars. In the early 1970’s the first two spacecraft to escape the sun’s gravitational pull, Pioneer 10 and 11, each carried an engraved plaque designed to tell aliens where Earth is, and what human beings look like. Voyager 1 and 2 carried a more ambitious message of images and sounds encoded on a phonograph record. Both the Pioneer plaques and the Voyager records were devised by teams led by astronomers Carl Sagan and Frank Drake, both SETI pioneers. In 1974, the powerful Arecibo radio telescope beamed a brief 3 minute message towards a star cluster 21,000 light years away as part of a dedication ceremony for a major upgrade. The binary coded message was an image, including a stick figure of a human, our solar system, and some chemicals important to earthly life. The distant target was chosen simply because it was overhead at the time of the ceremony.

The plaque affixed to the Pioneer 10 and 11 spacecraft, the first spacecraft to leave our solar system. In the upper left corner is a diagram depicting the hydrogen atom, the most abundant element in the universe. The diagram symbolizes the transition of the electron from a spin-up to a spin-down state. This transition is responsible for radio emissions at the wavelength of 21 cm by clouds of hydrogen in interstellar space. This phenomenon is familiar to radio astronomers and provides a distance standard for indicating the size of the humans.  In the middle left is a representation of position of the sun with respect to the center of the galaxy and 14 pulsars.  At the bottom is a map of the solar system indicating the origin of the spacecraft at the sun's third planet.  The planets relative distances from the sun are given as binary numbers with the unit being one tenth of Mercury's distance from the sun.  At the right is a depiction of a human couple with the man's arm raised in gesture of friendly greeting and the pioneer spacecraft drawn in outline as a backdrop.
The plaque affixed to the Pioneer 10 and 11 spacecraft, the first spacecraft to leave our solar system. In the upper left corner is a diagram depicting the hydrogen atom, the most abundant element in the universe. The diagram symbolizes the transition of the electron from a spin-up to a spin-down state. This transition is responsible for radio emissions at the wavelength of 21 cm by clouds of hydrogen gas in interstellar space. This phenomenon is very familiar to radio astronomers and provides a distance standard used to indicate the sizes of the human beings. In the middle left is a representation of position of the sun with respect to the center of the galaxy and 14 pulsars. At the bottom is a map of the solar system indicating the origin of the spacecraft as the sun’s third planet. The relative distances of the planets from the sun are indicated as binary numbers with a unit one tenth the distance of Mercury from the sun. At the right is a depiction of a human couple with the man’s arm raised in a gesture of friendly greeting and the pioneer spacecraft drawn in outline as a backdrop NASA Ames Research Center.

Cultural anthropologist and conference speaker Klara Anna Capova said that in recent years, messaging to extraterrestrials has moved beyond science and become a commercial enterprise. In 1999 and 2003, a private company solicited content from the general public and transmitted these ‘Cosmic Call’ messages to several nearby sun-like stars from the 70 meter radio telescope of the Evpatoria Deep Space Center in Crimea, Ukraine.

In 2009, another private company transmitted 25,000 messages, collected via a website, towards the red dwarf star Gliese 581, 20 light years away. In 2008, a Dorito’s commercial was beamed to a sun-like star 42 light years away, and in 2009 Penguin books transmitted 1000 messages as part of a book promotion. In 2010, a greeting, spoken in the fictional Klingon language, was beamed towards the star Arcturus, 37 light years away. The message was sent to promote the opening of what was billed as the first authentic Klingon opera on Earth. As one conference speaker noted, there are no regulations on the transmission or content of such messages.

Actively messaging extraterrestrials is a controversial practice, and the director of the Evpatoria Center, Alexander Zaitsev, has faced criticism from some members of the scientific community for his actions. Traditionally, SETI researchers have simply listened for alien messages. A received message might allow humans to learn something about the nature and motives of its extraterrestrial senders. That might give us a basis for deciding whether or not it was wise and prudent to reply.

Drake’s Arecibo message, by intent, was beamed at a star cluster tens of thousands of light years away and was meant simply to demonstrate the capacity for interstellar messaging. The Pioneer and Voyager spacecraft likewise will not reach the stars for tens of thousands of years. On the other hand, the recent transmissions were directed at nearby stars, from which we might receive a reply in less than a century. At the conference, Seth Shostak advanced what he confessed was a provocative position. He said we shouldn’t worry too much about the recent transmissions, because the much weaker signals that constantly emanate from Earth would be detectable by extraterrestrial civilizations with more advanced radio technology anyway. “That horse”, he said “has already left the barn”.

In the next installment, we will explore the SETI Institute’s current and planned efforts to conduct our human search for extraterrestrial signals. We will consider the limits of our own signaling capacity, and learn that the amount of information we could send the aliens is truly vast.

References and Further Reading:

Communicating across the Cosmos: How can we make ourselves understood by other civilizations in the galaxy (2014), SETI Institute Conference Website

N. Atkinson (2008), Message from Earth beamed to alien world, Universe Today.

F. Cain (2013), How could we find aliens? The search for extraterrestrial intelligence (SETI), Universe Today.

M. J. Crowe (1986) The Extraterrestrial Life Debate 1750-1900: The Idea of a Plurality of Worlds From Kant to Lowell, University of Cambridge, Cambridge, UK.

C. Sagan, F. Drake, A. Druyan, T. Ferris, J. Lomberg, L. S. Sagan (1978), Murmurs of Earth: The Voyager Interstellar Record, Random House, New York, NY.

W. T. Sullivan III; S. Brown, and C. Wetherill, (1978) Eavesdropping: The radio signature of Earth, Science 199(4327): 377-388.