New Estimate Calculates There Could be 30 Intelligent Civilizations Communicating Across the Milky Way

Over the years, scientific estimates of potential intelligent life in our galaxy have ranged widely. Some estimates say just one (only us Earthlings) to just a handful, to possibly thousands or even millions. A new study attempts to quantify the number of other worlds we could potentially talk to by estimating the number of intelligent civilizations within the Milky Way that are actively communicating.   

The number?

Continue reading “New Estimate Calculates There Could be 30 Intelligent Civilizations Communicating Across the Milky Way”

What Are The Biggest Mysteries in Astronomy?

What Are The Biggest Mysteries in Astronomy?

Black Holes? Dark Energy? Dark Matter? Alien Life? What are the biggest mysteries that still exist out there for us to figure out?

“The more I learn, the more I realize how much I don’t know.” These are the words of Albert Einstein. I assume he was talking about Minecraft, but I guess it applies to the Universe too.

There are many examples: astronomers try to discover the rate of the expansion of the Universe, and learn a dark energy is accelerating its expansion. NASA’s Cassini spacecraft finally images Saturn’s moon Iapetus, and finds a strange equatorial ridge – how the heck did that get there? Did the Celestials forget to trim it when it came out of the packaging?

There have always been, and, let’s go as far as to say that there always will be, mysteries in astronomy. Although the nature of the mysteries may change, the total number is always going up.

Hundreds of years ago, people wanted to know how the planets moved through sky (conservation of angular momentum), how old the Earth was (4.54 billion years), or what kept the Moon from flying off into space (gravity). Just a century ago, astronomers weren’t sure what galaxies were (islands of stars), or how the Sun generated energy (nuclear fusion). And just a few decades ago, we didn’t know what caused quasars (feeding supermassive black holes), or how old the Universe was (13.8 billion years). Each of these mysteries has been solved, or at least, we’ve a got a pretty good understanding of what’s going on.

Science continues to explore and seek answers to the mysteries we have, and as it does it opens up new brand doors. Fortunately for anyone who’s thinking of going into astronomy as a career, there are a handful of really compelling mysteries to explore right now:

Is the Universe finite or infinite? We can see light that left shortly after the Big Bang, 13.8 billion years in all directions. And the expansion of the Universe has carried these regions more than 45 billion light-years away from us. But the Universe is probably much larger than that, and may be even infinite.

Images from the Hubble Space Telescope showing a gravitational lensing effect. Credit: NASA/ESA.
Images from the Hubble Space Telescope showing a gravitational lensing effect. Credit: NASA/ESA.

What is dark matter? Thanks to gravitational lensing, astronomers can perceive vast halos of invisible material around all galaxies. But what is this stuff, and why doesn’t it interact with any other matter?

What is dark energy? When trying to discover the expansion rate of the Universe, astronomers discovered that the expansion is actually accelerating? Why is this happening? Is something causing this force, or do we just not understand gravity at the largest scales?

There are supermassive black holes at the heart of pretty much every galaxy. Did these supermassive black holes form first, and then the galaxies around them? Or was it the other way around?

The Big Bang occurred 13.8 billion years ago, and the expansion of the Universe has continued ever since. But what came before the Big Bang? In fact, what even caused the Big Bang? Has it been Big Bangs over and over again?

The Universe 590 million years after the Big Bang. Credit: Alvaro Orsi, Institute for Computational Cosmology, Durham University.
The Universe 590 million years after the Big Bang. Credit: Alvaro Orsi, Institute for Computational Cosmology, Durham University.

Are we alone in the Universe? Is there life on any other world or star system? And is anyone out there we could talk to?

Shortly after the Big Bang, incomprehensible amounts of matter and antimatter annihilated each other. But for some reason, there was a slightly higher ratio of matter – and so we have a matter dominated Universe. Why?

Is this the only Universe? Is there a multiverse of universes out there? How do I get to the Whedonverse?

In the distant future, after all the stars are dead and gone, maybe protons themselves will decay and there will be nothing left but energy. Physicists haven’t been able to catch a proton decaying yet. Will the ever?

And these are just some of the big ones. There are hundreds, thousands, millions of unanswered questions. The more we learn, the more we discover how little we actually understand.

Whenever we do a video about concepts in astronomy where we have a basic understanding, like gravity, evolution, or the Big Bang, trolls show up and say that scientists are so arrogant. That they think they know everything. But scientists don’t know everything, and they’re willing to admit when something is a mystery. When the answer to the question is: I don’t know.

What’s your favorite unanswered question in space and astronomy? Give us your best mystery in the comments below.

New Analysis Sets a Space & Time Zone for Complex Life

A new research paper reveals more details of the effect gamma ray bursts (GRB) have had on the development of complex life throughout the cosmos. Illustration depicts a beam from a GRB as might have been directed toward early life on Earth during the Cambrian or Ordovician periods, ~500 million years ago. (Illustration Credit: T. Reyes)

If too close to an environment harboring complex life, a gamma ray burst could spell doom for that life. But could GRBs be the reason we haven’t yet found evidence of other civilizations in the cosmos? To help answer the big question of “where is everybody?” physicists from Spain and Israel have narrowed the time period and the regions of space in which complex life could persist with a low risk of extinction by a GRB.

GRBs are some of the most cataclysmic events in the Universe. Astrophysicists are astounded by their intensity, some of which can outshine the whole Universe for brief moments. So far, they have remained incredible far-off events. But in a new paper, physicists have weighed how GRBs could limit where and when life could persist and evolve, potentially into intelligent life.

In their paper, “On the role of GRBs on life extinctions in the Universe”, published in the journal Science, Dr. Piran from Hebrew University and Dr. Jimenez from University of Barcelona consider first what is known about gamma ray bursts. The metallicity of stars and galaxies as a whole are directly related to the frequency of GRBs. Metallicity is the abundance of elements beyond hydrogen and helium in the content of stars or whole galaxies. More metals reduce the frequency of GRBs. Galaxies that have a low metal content are prone to a higher frequency of GRBs. The researchers, referencing their previous work, state that observational data has shown that GRBs are not generally related to a galaxy’s star formation rate; forming stars, including massive ones is not the most significant factor for increased frequency of GRBs.

As fate would have it, we live in a high metal content galaxy – the Milky Way. Piran and Jimenez show that the frequency of GRBs in the Milky Way is lower based on the latest data available. That is the good news. More significant is the placement of a solar system within the Milky Way or any galaxy.

The brightest gamma-ray burst ever seen in X-rays temporarily blinded Swift's X-ray Telescope on 21 June 2010. This image merges the X-rays (red to yellow) with the same view from Swift's Ultraviolet/Optical Telescope, which showed nothing extraordinary. Credit: NASA/Swift/Stefan Immler
The brightest gamma-ray burst ever seen in X-rays temporarily blinded Swift’s X-ray Telescope on 21 June 2010. This image merges the X-rays (red to yellow) with the same view from Swift’s Ultraviolet/Optical Telescope, which showed nothing extraordinary. Credit: NASA/Swift/Stefan Immler

The paper states that there is a 50% chance of a lethal GRB’s having occurred near Earth within the last 500 million years. If a stellar system is within 13,000 light years (4 kilo-parsecs) of the galactic center, the odds rise to 95%. Effectively, this makes the densest regions of all galaxies too prone to GRBs to permit complex life to persist.

The Earth lies at 8.3 kilo-parsecs (27,000 light years) from the galactic center and the astrophysicists’ work also concludes that the chances of a lethal GRB in a 500 million year span does not drop below 50% until beyond 10 kilo-parsecs (32,000 light years). So Earth’s odds have not been most favorable, but obviously adequate. Star systems further out from the center are safer places for life to progress and evolve. Only the outlying low star density regions of large galaxies keep life out of harm’s way of gamma ray bursts.

The paper continues by describing their assessment of the effect of GRBs throughout the Universe. They state that only approximately 10% of galaxies have environments conducive to life when GRB events are a concern. Based on previous work and new data, galaxies (their stars) had to reach a metallicity content of 30% of the Sun’s, and the galaxies needed to be at least 4 kilo-parsecs (13,000 light years) in diameter to lower the risk of lethal GRBs. Simple life could survive repeated GRBs. Evolving to higher life forms would be repeatedly set back by mass extinctions.

Piran’s and Jimenez’s work also reveals a relation to a cosmological constant. Further back in time, metallicity within stars was lower. Only after generations of star formation – billions of years – have heavier elements built up within galaxies. They conclude that complex life such as on Earth – from jelly fish to humans – could not have developed in the early Universe before Z > 0.5, a cosmological red-shift equal to ~5 billion years ago or longer ago. Analysis also shows that there is a 95% chance that Earth experienced a lethal GRB within the last 5 billion years.

The question of what effect a nearby GRB could have on life has been raised for decades. In 1974, Dr. Malvin Ruderman of Columbia University considered the consequences of a nearby supernova on the ozone layer of the Earth and on terrestrial life. His and subsequent work has determined that cosmic rays would lead to the depletion of the ozone layer, a doubling of the solar ultraviolet radiation reaching the surface, cooling of the Earth’s climate, and an increase in NOx and rainout that effects biological systems. Not a pretty picture. The loss of the ozone layer would lead to a domino effect of atmospheric changes and radiation exposure leading to the collapse of ecosystems. A GRB is considered the most likely cause of the mass extinction at the end of the Ordovician period, 450 million years ago; there remains considerable debate on the causes of this and several other mass extinction events in Earth’s history.

The paper focuses on what are deemed long GRBs – lGRBs – lasting several seconds in contrast to short GRBs which last only a second or less. Long GRBs are believed to be due to the collapse of massive stars such as seen in supernovas, while sGRBs are from the collision of neutron stars or black holes. There remains uncertainty as to the causes, but the longer GRBs release far greater amounts of energy and are most dangerous to ecosystems harboring complex life.

The paper narrows the time and space available for complex life to develop within our Universe. Over the age of the Universe, approximately 14 billion years, only the last 5 billion years have been conducive to the creation of complex life. Furthermore, only 10% of the galaxies within the last 5 billion years provided such environments. And within only larger galaxies, only the outlying areas provided the safe distances needed to evade lethal exposure to a gamma ray burst.

This work reveals how well our Solar System fits within the ideal conditions for permitting complex life to develop. We stand at a fairly good distance from the Milky Way’s galactic center. The age of our Solar System, at approximately 4.6 billion years, lies within the 5 billion year safe zone in time. However, for many other stellar systems, despite how many are now considered to exist throughout the Universe – 100s of billions in the Milky Way, trillions throughout the Universe – simple is probably a way of life due to GRBs. This work indicates that complex life, including intelligent life, is likely less common when just taking the effect of gamma ray bursts into consideration.

References:

On the role of GRBs on life extinction in the Universe, Tsvi Piran, Raul Jimenez, Science, Nov 2014, pre-print

Are Intelligent Civilizations Doomed?

Are Intelligent Civilizations Doomed?

One answer to the Fermi Paradox is the idea of the Great Filter; the possibility that something wipes out 100% of intelligent civilizations. That why we’ve never discovered any aliens… they’re all dead. Is that our future too?

In a previous episode, I presented the idea of the Fermi Paradox. If space is huge, like space huge, not aircraft carrier huge, and there are billions upon billions of stars, AND there seem to be lots of habitable planets around those stars, where are all the damn aliens?

Continue reading “Are Intelligent Civilizations Doomed?”