NASA’s Journey to Mars Ramps Up with InSight, Key Tests Pave Path to 2016 Lander Launch

NASA’s ‘Journey to Mars’ is ramping up significantly with ‘InSight’ – as the agency’s next Red Planet lander has now been assembled into its flight configuration and begun a comprehensive series of rigorous and critical environmental stress tests that will pave the path to launch in 2016 on a mission to unlock the riddles of the Martian core.

The countdown clock is ticking relentlessly and in less than nine months time, NASA’s InSight Mars lander is slated to blastoff in March 2016.

InSight, which stands for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is a stationary lander. It will join NASA’s surface science exploration fleet currently comprising of the Curiosity and Opportunity missions which by contrast are mobile rovers.

But before it will even be allowed to get to the launch pad, the Red Planet explorer must first prove its mettle and show that it can operate in and survive the harsh and unforgiving rigors of the space environment via a battery of prelaunch tests. That’s an absolute requirement in order for it to successfully carry out its unprecedented mission to investigate Mars deep interior structure.

InSight’s purpose is to elucidate the nature of the Martian core, measure heat flow and sense for “Marsquakes.” These completely new research findings will radically advance our understanding of the early history of all rocky planets, including Earth and could reveal how they formed and evolved.

“Today, our robotic scientific explorers are paving the way, making great progress on the journey to Mars,” said Jim Green, director of NASA’s Planetary Science Division at the agency’s headquarters in Washington, in a statement.

“Together, humans and robotics will pioneer Mars and the solar system.”

The science deck of NASA's InSight lander is being turned over in this April 29, 2015, photo from InSight assembly and testing operations inside a clean room at Lockheed Martin Space Systems, Denver.  The large circular component on the deck is the protective covering to be placed over InSight's seismometer after the seismometer is placed directly onto the Martian ground.   Credits: NASA/JPL-Caltech/Lockheed Martin
The science deck of NASA’s InSight lander is being turned over in this April 29, 2015, photo from InSight assembly and testing operations inside a clean room at Lockheed Martin Space Systems, Denver. The large circular component on the deck is the protective covering to be placed over InSight’s seismometer after the seismometer is placed directly onto the Martian ground. Credits: NASA/JPL-Caltech/Lockheed Martin

The launch window for InSight opens on March 4 and runs through March 30, 2016.

InSight will launch atop a United Launch Alliance (ULA) Atlas V rocket from Vandenberg Air Force Base, California.

InSight counts as NASA’s first ever interplanetary mission to launch from California.

The car sized probe will touch down near the Martian equator about six months later in the fall of 2016.

The prime contractor for InSight is Lockheed Martin Space Systems in Denver, Co and the engineering and technical team recently finished assembling the lander into its final configuration.

So now the time has begun to start the shakedown that literally involve “shaking and baking and zapping” the spacecraft to prove its ready and able to meet the March 2016 launch deadline.

During the next seven months of environmental testing at Lockheed’s Denver facility, “the lander will be exposed to extreme temperatures, vacuum conditions of nearly zero air pressure simulating interplanetary space, and a battery of other tests.”

“The assembly of InSight went very well and now it’s time to see how it performs,” said Stu Spath, InSight program manager at Lockheed Martin Space Systems, Denver, in a statement.

“The environmental testing regimen is designed to wring out any issues with the spacecraft so we can resolve them while it’s here on Earth. This phase takes nearly as long as assembly, but we want to make sure we deliver a vehicle to NASA that will perform as expected in extreme environments.”

The first test involves “a thermal vacuum test in the spacecraft’s “cruise” configuration, which will be used during its seven-month journey to Mars. In the cruise configuration, the lander is stowed inside an aeroshell capsule and the spacecraft’s cruise stage – for power, communications, course corrections and other functions on the way to Mars — is fastened to the capsule.”

After the vacuum test, InSight will be subjected to a series of tests simulating the vibrations of launch, separation and deployment shock, as well as checking for electronic interference between different parts of the spacecraft and compatibility testing.

Finally, a second thermal vacuum test will expose the probe “to the temperatures and atmospheric pressures it will experience as it operates on the Martian surface.”

The $425 million InSight mission is expected to operate for about two years on the Martian surface.

Artist rendition of NASA’s Mars InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) Lander. InSight is based on the proven Phoenix Mars spacecraft and lander design with state-of-the-art avionics from the Mars Reconnaissance Orbiter (MRO) and Gravity Recovery and Interior Laboratory (GRAIL) missions. Credit: JPL/NASA
Artist rendition of NASA’s Mars InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) Lander. InSight is based on the proven Phoenix Mars spacecraft and lander design with state-of-the-art avionics from the Mars Reconnaissance Orbiter (MRO) and Gravity Recovery and Interior Laboratory (GRAIL) missions. Credit: JPL/NASA

InSight is an international science mission and a near duplicate of NASA’s successful Phoenix Mars landing spacecraft, Bruce Banerdt, InSight Principal Investigator of NASA’s Jet Propulsion Laboratory (JPL), Pasadena, California, told Universe Today.

“InSight is essentially built from scratch, but nearly build-to-print from the Phoenix design,” Banerdt, of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena , Calif, told me. The team can keep costs down by re-using the blueprints pioneered by Phoenix instead of creating an entirely new spacecraft.

3 Footpads of Phoenix Mars Lander atop Martian Ice.  NASA’s Mars InSight spacecraft design is based on the successful 2008 Phoenix lander. This mosaic shows Phoenix touchdown atop Martian ice.  Phoenix thrusters blasted away Martian soil and exposed water ice.  InSight carries instruments to peer deep into the Red Planet and investigate the nature and size of the mysterious Martian core.  Credit: Ken Kremer/kenkremer.com/Marco Di Lorenzo/NASA/JPL/UA/Max Planck Institute
3 Footpads of Phoenix Mars Lander atop Martian Ice. NASA’s Mars InSight spacecraft design is based on the successful 2008 Phoenix lander. This mosaic shows Phoenix touchdown atop Martian ice. Phoenix thrusters blasted away Martian soil and exposed water ice. InSight carries instruments to peer deep into the Red Planet and investigate the nature and size of the mysterious Martian core. Credit: Ken Kremer/kenkremer.com/Marco Di Lorenzo/NASA/JPL/UA/Max Planck Institute

It is funded by NASA’s Discovery Program as well as several European national space agency’s and countries. Germany and France are providing InSight’s two main science instruments; HP3 and SEIS through the Deutsches Zentrum für Luft- und Raumfahrt. or German Aerospace Center (DLR) and the Centre National d’Etudes Spatiales (CNES).

“The seismometer (SEIS, stands for Seismic Experiment for Interior Structure) is from France (built by CNES and IPGP) and the heat flow probe (HP3, stands for Heat Flow and Physical Properties Probe) is from Germany (built by DLR),” Banerdt explained.

SEIS and HP3 are stationed on the lander deck. They will each be picked up and deployed by a robotic arm similar to that flown on Phoenix with some modifications.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Mars One Soliciting Your Research Ideas for 2018 Robotic Red Planet Lander

Would you like to send your great idea for a research experiment to Mars and are searching for a method of transport?

The Mars One non-profit foundation that’s seeking settlers for a one-way trip to establish a permanent human colony on the Red Planet starting in the mid-2020’s, is now soliciting science and marketing proposals in a worldwide competition for their unmanned forerunner mission – the 2018 Mars One technology demonstration lander.

The Dutch-based Mars One team announced this week that they are seeking requests for proposals for seven payloads that would launch in August 2018 on humanities first ever privately financed robotic Red Planet lander.

Mars One hopes that the 2018 lander experiments will set the stage for liftoff of the first human colonists in 2024. Crews of four will depart every two years.

Artist's conception of Mars One human settlement. Credit: Mars One/Brian Versteeg
Artist’s conception of Mars One human settlement. Credit: Mars One/Brian Versteeg

The 2018 lander structure would be based on NASA’s highly successful 2007 Phoenix Mars lander – built by Lockheed Martin – which discovered and dug into water ice buried just inches beneath the topsoil in the northern polar regions of the Red Planet.

Mars One has contracted with Lockheed Martin to build the new 2018 lander.

Lockheed is also currently assembling another Phoenix-like lander for NASA named InSight which is scheduled to blast off for Mars in 2016.

The payloads being offered fall under three categories; four science demonstration payloads, a single university science experiment, and two payload spaces up for sale to the highest bidder for science or marketing or “anything in between.”

The science payload competition is open to anyone including universities, research bodies, and companies from around the world.

“Previously, the only payloads that have landed on Mars are those which NASA has selected,” said Bas Lansdorp, Co-founder & CEO of Mars One, in a statement. “We want to open up the opportunity to the entire world to participate in our mission to Mars by sending a certain payload to the surface of Mars.”

The four science demonstration payloads will test some of the technologies critical for establishing the future human settlement. They include soil acquisition experiments to extract water from the Martian soil into a useable form to test technologies for future human colonists; a thin film solar panel to demonstrate power production; and a camera system working in combination with a Mars-synchronous communications satellite to take a ‘real time’ look on Mars.

3 Footpads of Phoenix Mars Lander atop Martian Ice.  Phoenix thrusters blasted away Martian soil and exposed water ice. Proposed Mars InSight mission will build a new Phoenix-like lander from scratch to peer deep into the Red Planet and investigate the nature and size of the mysterious Martian core. Credit: Ken Kremer, Marco Di Lorenzo, Phoenix Mission, NASA/JPL/UA/Max Planck Institute
3 Footpads of Phoenix Mars Lander atop Martian Ice
Phoenix thrusters blasted away Martian soil and exposed water ice. Proposed Mars One 2018 mission will build a new Phoenix-like lander from scratch to test technologies for extracting water into a useable form for future human colonists. NASA’s InSight 2016 mission will build a new Phoenix-like lander to peer deep into the Red Planet and investigate the nature and size of the mysterious Martian core. Credit: Ken Kremer, Marco Di Lorenzo, Phoenix Mission, NASA/JPL/UA/Max Planck Institute

The single University competition payload is open to universities worldwide and “can include scientific experiments, technology demonstrations or any other exciting idea.” Click here for – submission information.

Furthermore two of the payloads are for sale “to the highest bidder” says Mars One in a statement and request for proposals document.

The payloads for sale “can take the form of scientific experiments, technology demonstrations, marketing and publicity campaigns, or any other suggested payload,” says Mars One.

“We are opening our doors to the scientific community in order to source the best ideas from around the world,” said Arno Wielders, co-founder and chief technical officer of Mars One.

Image shows color MOLA relief with US lander landing sites (Image credit NASA/JPL-Caltech/Arizona State University). Yellow box indicates Mars One Precursor landing regions under consideration.
Image shows color MOLA relief with US lander landing sites (Image credit NASA/JPL-Caltech/Arizona State University). Yellow box indicates Mars One Precursor landing regions under consideration.

“The ideas that are adopted will not only be used on the lander in 2018, but will quite possibly provide the foundation for the first human colony on Mars. For anyone motivated by human exploration, there can be no greater honor than contributing to a manned mission to Mars.”

Click here for the Mars One 2018 Lander ‘Request for Proposals.’

Over 200,000 Earthlings applied to Mars One to become future human colonists. That list has recently been narrowed to 705.

Stay tuned here for Ken’s continuing Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, commercial space, MAVEN, MOM, Mars and more planetary and human spaceflight news.

Ken Kremer

…………….

Learn more about NASA’s Mars missions and Orbital Sciences Antares ISS launch on July 11 from NASA Wallops, VA in July and more about SpaceX, Boeing and commercial space and more at Ken’s upcoming presentations.

July 10/11: “Antares/Cygnus ISS Launch from Virginia” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening

NASA Mars Lander InSight ‘Go’ For Construction

It’s time to get ready for Mars, again! NASA has given the approval to begin construction on its 2016 mission, the Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport (InSight) mission.

As the mission implies, the lander (which isn’t moveable) will focus on learning more about the inside of Mars. The idea is to figure out how terrestrial planets are “differentiated” inside between core, mantle and crust. Also, watchers of the Mars program may recognize some parts of the lander, as it will borrow the design from the successful Phoenix mission in 2008.

“We will incorporate many features from our Phoenix spacecraft into InSight, but the differences between the missions require some differences in the InSight spacecraft,” stated Stu Spath, InSight program manager at Lockheed Martin.

“For example, the InSight mission duration is 630 days longer than Phoenix, which means the lander will have to endure a wider range of environmental conditions on the surface.”

View of Mars' surface near the north pole from the Phoenix lander. Credit: NASA/JPL-Calech/University of Arizona
View of Mars’ surface near the north pole from the Phoenix lander. Credit: NASA/JPL-Calech/University of Arizona

NASA mission planners are still determining where InSight will go, but they expect it will be a site near the equator of Mars and that it will last at least two years on the surface.

The Mars lander will include a robotic arm with “surface and burrowing” instruments whose projects are led by the French and German space agencies, which are CNES (National Center of Space Studies) and DLR (German Center for Aerospace), respectively. CNES will contribute a seismic experiment to look at “Marsquakes” and when meteors smack the surface, while DLR’s science experiment will look at interior planetary heat.

Mars on March 8, 2014 shows not only clouds over Hellas but evening limb clouds. Credit: W.L. Chin
Mars on March 8, 2014 shows not only clouds over Hellas but evening limb clouds. Credit: W.L. Chin

The seismometer will sit on the surface, covered up to protect it from the cold and wind, while the heat-flow probe will be hammered in about three to five yards or meters. Investigators also plan an experiment that will communicate with NASA’s Deep Space Network antenna network to see how much the rotation of Mars wobbles, which could hint if the core of the Red Planet is solid or liquid. The mission will also include wind, temperature and pressure sensors, as well as a magnetometer.

“Mars actually offers an advantage over Earth itself for understanding how habitable planetary surfaces can form,” stated Bruce Banerdt, InSight principal investigator at NASA’s Jet Propulsion Laboratory. “Both planets underwent the same early processes. But Mars, being smaller, cooled faster and became less active while Earth kept churning. So Mars better preserves the evidence about the early stages of rocky planets’ development.”

Construction will be led by Lockheed Martin. You can check out more information about InSight at this website. NASA has several missions working at Mars right now, such as the Mars Curiosity rover, the Opportunity rover and the orbiting Mars Reconnaissance Orbiter and Mars Odyssey spacecraft.

Source: Jet Propulsion Laboratory

Let’s Put a Sailboat on Titan

The large moons orbiting the gas giants in our solar system have been getting increasing attention in recent years. Titan, Saturn’s largest moon, is the only natural satellite known to house a thick atmosphere. It’s surface, revealed in part by the Cassini probe, is sculpted by lakes and rivers. There is interest in exploring Titan further, but this is tricky from orbit because seeing through the thick atmosphere is difficult. Flying on Titan has been discussed around the web (sometimes glibly), and this was even one of the subjects treated by the immensely popular comic, XKCD.

However, there remains the problem of powering propulsion. The power requirements for flight are quite minimal on Titan, so solar wings might work. But Titan also presents an alternative: sailing.

Images from the Cassini mission show river networks draining into lakes in Titans north polar region. Credit: NASA/JPL/USGS.
Images from the Cassini mission show river networks draining into lakes in Titans north polar region. Credit: NASA/JPL/USGS.

With all those lakes and rivers, exploring Titan with a surface ship might be a great way to see much of the moon. The vehicle wouldn’t be sailing on water, though. The lakes on Titan are composed of liquid methane. The challenge is therefore making the vessel buoyant: liquid methane is only 45% as dense as liquid water. This means we would need a lot of displacement. A deep, hollow hull could do this, however, and it turns out that the liquid methane has an advantage that helps make up for the low density: it is much less viscous than water.

Reynolds number is proportional to the ratio of density to viscosity, and it turns out that friction drag on a hull is inversely proportional to Re. While Titan’s seas and lakes have only 45% the density of water, they also have only 8% of the viscosity. This means that the Titan sailing vessel would only experience about 26% of the friction drag as its Earth equivalent. [Yacht designers have found that the friction drag is about equal to 0.075/(log(Re)-2)^2)]. That leaves us room to make the hull deeper (important to compensate for the density as above), and longer (if we want a longer waterline, which will make the bow waves longer and improve maximum speed).

The sail itself would get less wind, on average, on Titan than Earth. Average wind speeds on Titan seem to be about 3 meters/s, according to Cassini, though it might be higher over the lakes. Average wind speed over Earth oceans is closer to 6.6 meters/s. But, the Titan atmosphere is also about 4x denser than Earth’s, and both lift and drag are proportional to fluid density. All told, this means that the total fluid force on the sail will be about 83% of what you’d get on Earth, all else being equal, which could be sufficient. There would be a premium on sail efficiency and size, and so we might have to take advantage of the low-friction hull to examine shapes with more stability that can house a larger, taller (and presumably high aspect ratio) sail.

This is all quite speculative, of course, but it provides a fun exercise and perhaps provides inspiration as we imagine tall-sailed robotic vessels silently cruising the lakes of Titan.

Titan Mare Explorer. Image credit: NASA/JPL
Titan Mare Explorer. Image credit: NASA/JPL

One concept for a boat on Titan has already been proposed: the Titan Mare Explorer (TiME) would send a floating high-tech buoy to land in a methane sea on this moon of Saturn to study its composition and its interaction with the atmosphere. But this Discovery-class mission concept was nixed in favor of sending the InSight lander to Mars.

But with all the recent discoveries on Titan by the Cassini spacecraft — things like lakes, seas, rivers and weather and climate patterns that create both fog and rain — a mission like this will be given more consideration in the future.

Where’s the Best Place To Drill for History on Mars?

Where’s the best place to drill baby, drill on Mars – and not for oil but digging into Mars’ past? Apparently, a relatively level spot near the equator is the preferred spot. The 2016 InSight lander is the next mission to land on Mars and it will use a probe to hammer down 3-5 meters under the surface. NASA has now narrowed down the potential landing sites to just four from an original twenty-two proposed locations, and all four lie along the planet’s mid-section on the plains of Elysium Planitia.

“We picked four sites that look safest,” said geologist Matt Golombek from the Jet Propulsion Laboratory. Golombek is leading the site-selection process for InSight. “They have mostly smooth terrain, few rocks and very little slope.”

This artist's concept depicts the stationary NASA Mars lander known by the acronym InSight at work studying the interior of Mars. Image credit: JPL/NASA
This artist’s concept depicts the stationary NASA Mars lander known by the acronym InSight at work studying the interior of Mars. Image credit: JPL/NASA

InSight stands for “Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport” and it is scheduled to launch in March 2016 and land in September of that year. The mission will investigate processes that formed and shaped Mars and will help scientists better understand the evolution of our inner solar system’s rocky planets, including Earth. It will also monitor the planet’s current internal temperature and any seismology taking place.

So, unlike previous Mars landings, what is on the surface in the area matters little in the choice of a site except for safety considerations.

“This mission’s science goals are not related to any specific location on Mars because we’re studying the planet as a whole, down to its core,” said Bruce Banerdt, InSight principal investigator. “Mission safety and survival are what drive our criteria for a landing site.”

Elysium works well for the InSight mission because of two basic engineering constraints. One requirement is being close enough to the equator for the lander’s solar array to have adequate power at all times of the year. Also, the elevation must be low enough to have sufficient atmosphere above the site for a safe landing. The spacecraft will use the atmosphere for deceleration during descent.

InSight also needs penetrable ground for its probe that will monitor heat coming from the planet’s interior. This tool can penetrate through broken-up surface material or soil, but could be foiled by solid bedrock or large rocks. InSight also will deploy a seismometer on the surface and will use its radio for scientific measurements.

Images from the Mars Reconnaissance orbiter have been crucial in narrowing down the sites, and will continue to aid scientists and engineers in choosing the final site.

Golombek said that since considering what is below the surface is important to evaluate candidate landing sites, scientists also studied MRO images of large rocks near Martian craters formed by asteroid impacts. Impacts excavate rocks from the subsurface, so by looking in the area surrounding craters, the scientists could tell if the subsurface would have probe-blocking rocks lurking beneath the soil surface.

Each semifinalist site is an ellipse measuring 81 miles (130 kilometers) from east to west and 17 miles (27 kilometers) from north to south. Engineers calculate the spacecraft will have a 99-percent chance of landing within that ellipse, if targeted for the center.
The team will select two or three finalists by the end of 2014, and make a final decision on InSight’s destination by the end of 2015.

Mars Lander Wins Out for 2016 Mission Over Titan Boat and Comet Hopper

A new mission to Mars will launch in 2016, NASA announced on Monday, a lander named InSight that will probe Mars’ interior to determine whether it has a solid or liquid core, if it actually does have fault lines and plate tectonics, and figure out the Red Planet’s basic internal structure. All of this will not only help scientists understand Mars, but also to gain insight on how terrestrial planets form and evolve.

“We’re very confident that this will produce exciting science,” said John Grunsfeld, NASA’s associate administrator for the agency’s Science Mission Directorate.

InSight won out for this round of NASA’s lowest cost missions, the Discovery missions, over two other very enticing proposals: the Titan Mare Explorer (TiME) would have sent a floating high-tech buoy to land in a methane sea on Saturn’s moon Titan to study its composition and its interaction with the atmosphere; and Chopper was a proposed Comet Hopper mission that would put a lander on comet 46P/Wirtanen where it would study the comet’s composition, and with thrusters it could essentially “hop” to different locations on the comet.

While all three missions in the competition were compelling, NASA only has enough money, unfortunately, for one Discovery mission in 2016. And, Grunsfeld said, InSight was the best choice of a project that could stay at or even under the Discovery program’s $425 million cost cap, excluding launch costs, and keep its tight schedule to launch in 2016.

“Our Discovery Program enables scientists to use innovative approaches to answering fundamental questions about our Solar System in the lowest cost mission category,” said Grunsfeld. “InSight will get to the ‘core’ of the nature of the interior and structure of Mars, well below the observations we’ve been able to make from orbit or the surface.”

Asked during a press briefing if NASA is becoming, too Mars-centric, Grunsfeld replied, “We still have a broad portfolio of missions, with Juno recently launching, OSIRIS-Rex launching in 2016, the Dawn mission going on and New Horizons heading to Pluto, so I think we’ve shown very broad diversity in past selections.”

Grunsfeld was also asked if the Curiosity rover’s recent successful landing had any influence on the choice, but Grunsfeld said the decision was actually made before the Mars Science Laboratory rover touched down.

“We’re really clueless on the interior of Mars,” said NASA’s Planetary Science Chief, Jim Green. “And this is really our first attempt to understand what terrestrial bodies go through in their early evolution.”

Insight’s body is based on the Phoenix lander, which landed in Mars’ polar region in 2008, and will use solar panels for power instead of a radioisotope power system, which saves on costs. But the instrumentation for InSight is completely different than Phoenix, and it involves an international mix.

InSight will carry four instruments: JPL will supply a geodetic instrument to determine the planet’s rotation axis and a robotic arm and two cameras used to deploy and monitor instruments on the Martian surface. The French space agency CNES is leading an international consortium that is building an instrument to measure seismic waves traveling through the planet’s interior. The German Aerospace Center (DLR) is building a subsurface heat probe to measure the flow of heat from the interior.

And don’t expect any great color photos of Mars’ surface from InSight. It will only have a black and white context camera, and Green said they don’t expect any changes in that regard, as the mission will need to stay on budget and on time.

InSight will land in a flat, equatorial, flat region in September 2016 to begin a two-year scientific mission. “The Phoenix lander went to polar regions and we knew it was going to be a short lifetime,” said Grunsfeld. “Because InSight goes to an equatorial region where the environment is relatively more benign, it has the potential to last longer, so that is exciting.”

Green touched on other potential areas of study for InSight, such as determining if there are “Marsquakes,” and whether the landslides seen by the Mars Reconnaissance Orbiter’s HiRISE camera are due to activity on the planet like quakes or from melting.

“Methane is being potentially being produced from Mars’ interior,” Green said, “and that touches upon the potential life question. But that is a potentially active process a-bioticaly, in interactions between water, minerals and magma. And this mission could determine if Mars has a hot interior magma, and why it doesn’t generate a magnetic field. What we are seeing are some of the different perspectives of Mars being an active planet or not, and these instruments will clearly be able to do this.”

Sources: NASA, press briefing