What Will It Take To Reach Zero Space Debris?

The space debris problem is only getting worse. The ESA says we lack the technology to deal with it. We may also lack the needed political cohesion. Image Credit: ESA

The space debris problem won’t solve itself. We’ve been kicking the can down the road for years as we continue launching more rockets and payloads into space. In the last couple of years, organizations—especially the European Space Association—have begun to address the problem more seriously.

Now they’re asking this question: What will it take to reach zero space debris?

Continue reading “What Will It Take To Reach Zero Space Debris?”

A Hypervelocity Experiment Mimics the Surface Conditions of Ceres

Dwarf planet Ceres is the largest object in the asteroid belt between Mars and Jupiter. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA, taken by Dawn Framing Camera
Dwarf planet Ceres is the largest object in the asteroid belt between Mars and Jupiter. NASA's Dawn mission found complex organic molecules on Ceres. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA, taken by Dawn Framing Camera

It might be oxymoronic to say that the more we find out about something, the more mysterious it becomes. But if that’s true of anything in our Solar System, it might be true about Ceres, the largest body in the main asteroid belt.

Continue reading “A Hypervelocity Experiment Mimics the Surface Conditions of Ceres”

Impacts From Interstellar Objects Should Leave Very Distinct Craters

In a recent study submitted to Earth and Planetary Astrophysics, a team of researchers from Yale University investigated how to identify impact craters that may have been created by Interstellar Objects (ISOs). This study is intriguing as the examination of ISOs has gained notable interest throughout the scientific community since the discoveries and subsequent research of ‘Oumuamua and Comet 2I/Borisov in 2017 and 2019, respectively. In their paper, the Yale researchers discussed how the volume of impact melt within fixed-diameter craters could be a possible pathway for recognizing ISO craters, as higher velocity impacts produce greater volumes of impact melt.

Continue reading “Impacts From Interstellar Objects Should Leave Very Distinct Craters”

A Chunk of Space Junk Just Hit the Far Side of the Moon

The Moon contains more metal than previously thought, according to a new study. Is it time to re-think the giant impact hypothesis? Image Credit: NASA / GSFC / Arizona State University

Observers have been tracking a chunk of space junk, waiting for it to strike the Moon. It should’ve hit the far side of the Moon, and hopefully, orbiters will have images of the impact site, though that might take a while.

The origins of the junk are in dispute. Some say it’s a spent booster from a Chinese rocket. Others say it’s from a SpaceX rocket. So far, nobody is claiming it.

Continue reading “A Chunk of Space Junk Just Hit the Far Side of the Moon”

It’s Been Constantly Raining Meteors on Mars for 600 Million Years. Earth too.

An impact crater on Mars. Image Credit: NASA

New research shows that Mars has faced a constant rain of meteors during the last 600 million years. This finding contradicts previous research showing that the impact rate has varied, with prominent activity spikes. Why would anyone care how often meteors rained down on Mars, a planet that’s been dead for billions of years?

Because whatever Mars was subjected to, Earth was also likely subjected to.

Who wouldn’t want to know our planet’s history?

Continue reading “It’s Been Constantly Raining Meteors on Mars for 600 Million Years. Earth too.”

NASA’s New Asteroid Impact Monitoring System Comes Online

This diagram shows the orbits of 2,200 potentially hazardous objects as calculated by JPL’s Center for Near Earth Object Studies (CNEOS). Highlighted is the orbit of the double asteroid Didymos, the target of NASA’s Double Asteroid Redirect Test (DART) mission. Credit: NASA/JPL-Caltech

An asteroid striking Earth is a genuine possibility. There are tens of thousands of asteroids classified as Near-Earth Asteroids (NEAs), and we’re finding around 3,000 more each year. The number of new detections will see an uptick in the next few years as better survey telescopes come online.

Now NASA has developed a new system to classify all those asteroids and better evaluate impact probabilities.

Continue reading “NASA’s New Asteroid Impact Monitoring System Comes Online”

Did Asteroid Impacts Provide Both the Heat and Raw Ingredients to Enable Life?

An artist's conception of an asteroid collision, which leads to how "families" of these space rocks are made in the belt between Mars and Jupiter. Credit: NASA/JPL-Caltech
An artist's conception of an asteroid collision, in the belt between Mars and Jupiter. Credit: NASA/JPL-Caltech

This is our Great Question: How did life begin on Earth? Anyone who says they have the answer is telling tall tales. We just don’t know yet.

While a definitive answer may be a long way off—or may never be found—there are some clever ways to nibble at the edges of that Great Question. A group of researchers at Kobe University in Japan are taking their own bites out of that compelling question with a question of their own: Did the heat from asteroid impacts help life get started?

Continue reading “Did Asteroid Impacts Provide Both the Heat and Raw Ingredients to Enable Life?”

There’s a Vast Microbial Ecosystem Underneath the Crater that Wiped Out the Dinosaurs

A three-dimensional cross-section of the hydrothermal system in the Chicxulub impact crater and its seafloor vents. The system has the potential for harboring microbial life. Illustration by Victor O. Leshyk for the Lunar and Planetary Institute.

How did life arise on Earth? How did it survive the Hadean eon, a time when repeated massive impacts excavated craters thousands of kilometres in diameter into the Earth’s surface? Those impacts turned the Earth into a hellish place, where the oceans turned to steam, and the atmosphere was filled with rock vapour. How could any living thing have survived?

Ironically, those same devastating impacts may have created a vast subterranean haven for Earth’s early life. Down amongst all those chambers and pathways, pumped full of mineral-rich water, primitive life found the shelter and the energy needed to keep life on Earth going. And the evidence comes from the most well-known extinction event on Earth: the Chicxulub impact event.

Continue reading “There’s a Vast Microbial Ecosystem Underneath the Crater that Wiped Out the Dinosaurs”

Giant Meteor Impacts Might Have Triggered Early Earth’s Plate Tectonics

Mining asteroids might be necessary for humanity to expand into the Solar System. But what effect would asteroid mining have on the world's economy? Credit: ESA.

Plate tectonics have played a vital role in the geological evolution of our planet. In addition, many scientists believe that Earth’s geologically activity may have played an important role in the evolution of life – and could even be essential for a planet’s habitability. For this reason, scientists have long sought to determine how and when Earth’s surface changed from molten, viscous rock to a solid crust that is constantly resurfacing.

Read more

Fossilized Clams Had Evidence of a Meteorite Impact Inside Them

Some of the microtektites found by Mike Meyer inside fossilized clams in Florida. Image Credit: Photo by Meyer et al in Meteoritics and Planetary Science.

When an extraterrestrial object slams into the Earth, it sends molten rock high into the atmosphere. That debris cools and re-crystallizes and falls back down to Earth. Tiny glass beads that form in this process are called microtektites, and researchers in Florida have found microtektites inside fossilized clams.

Continue reading “Fossilized Clams Had Evidence of a Meteorite Impact Inside Them”