Cutting-Edge Astronomy Confirms Most Ancient Galaxy to Date

This illustration shows how gravitational lensing works. The gravity of a large galaxy cluster is so strong, it bends, brightens and distorts the light of distant galaxies behind it. The scale has been greatly exaggerated; in reality, the distant galaxy is much further away and much smaller. Credit: NASA, ESA, L. Calcada

Since the deployment of the Hubble Space Telescope, astronomers have been able to look deeper into the cosmic web than ever before. The farther they’ve looked, the deeper back in time they are able to see, and thus learn what the Universe looked like billions of years ago. With the deployment of other cutting-edge telescopes and observatories, scientists have been able to learn a great deal more about the history and evolution of the cosmos.

Most recently, an international team of astronomers using the Gemini North Telescope in Hawaii were able to spot a spiral galaxy located 11 billion light years away. Thanks to a new technique that combined gravitational lensing and spectrography, they were able to see an object that existed just 2.6 billion years after the Big Bang. This makes this spiral galaxy, known as A1689B11, the oldest and most distant spiral galaxy spotted to date.

The study which details the team’s findings, titled “The most ancient spiral galaxy: a 2.6-Gyr-old disk with a tranquil velocity field“, recently appeared in The Astrophysical Journal. The team consisted of members from the Swinburne University of Technology, the Australian Research Council Center of Excellence in All Sky Astrophysics in 3D (ASTRO 3D), the University of Lyon, Princeton University, and the Racah Institute of Physics at The Hebrew University in Jerusalem.

Spiral galaxy A1689B11 sits behind a massive cluster of galaxies that acts as a lens, producing two magnified images of the spiral galaxy in different positions in the sky. Credit: James Josephides

Together, the team relied on the gravitational lensing technique to spot A1689B11. This technique has become a mainstay for astronomers, and involves using a large object (like a galaxy cluster) to bend and magnify the light of a galaxy located behind it. As Dr. Tiantian Yuan, a Swinburne astronomer and the lead author on the research study, explained in a Swinburne press statement:

“This technique allows us to study ancient galaxies in high resolution with unprecedented detail. We are able to look 11 billion years back in time and directly witness the formation of the first, primitive spiral arms of a galaxy.”

They then used the Near-infrared Integral Field Spectrograph (NIFS) on the Gemini North telescope to verify the structure and nature of this spiral galaxy. This instrument was built Peter McGregor of The Australian National University (ANU), which now is responsible for maintaining it. Thanks to this latest discovery, astronomers now have some additional clues as to how galaxies took on the forms that we are familiar with today.

Based on the classification scheme developed by famed astronomer Edwin Hubble (the “Hubble Sequence“), galaxies are divides into 3 broad classes based on their shapes – ellipticals, lenticulars and spirals – with a fourth category reserved for “irregularly-shaped” galaxies. In accordance with this scheme, galaxies start out as elliptical structures before branching off to become spiraled, lenticular, or irregular.

A figure illustrating the Hubble sequence, showing elliptical galaxies (left) and evolving to fit the three broad categories (right) of ellipticals, lenticulars and spirals. Credit: Ville Koistinen

As such, the discovery of such an ancient spiral galaxy is crucial to determining when and how the earliest galaxies began changing from being elliptical to taking on their modern forms. As Dr Renyue Cen, an astronomer from Princeton University and a co-author on the study, says:

“Studying ancient spirals like A1689B11 is a key to unlocking the mystery of how and when the Hubble sequence emerges. Spiral galaxies are exceptionally rare in the early Universe, and this discovery opens the door to investigating how galaxies transition from highly chaotic, turbulent discs to tranquil, thin discs like those of our own Milky Way galaxy.”

On top of that, this study showed that the A1689B11 spiral galaxy has some surprising features which could also help inform (and challenge) our understanding of this period in cosmic history. As Dr. Yuan explained, these features are in stark contrast to galaxies as they exist today. But equally interesting is the fact that it also differentiates this spiral galaxy from other galaxies that are similar in age.

“This galaxy is forming stars 20 times faster than galaxies today – as fast as other young galaxies of similar masses in the early Universe,” said Dr. Yuan. “However, unlike other galaxies of the same epoch, A1689B11 has a very cool and thin disc, rotating calmly with surprisingly little turbulence. This type of spiral galaxy has never been seen before at this early epoch of the Universe!”

Illustration of the depth by which Hubble imaged galaxies in prior Deep Field initiatives, in units of the Age of the Universe. Credit: NASA and A. Feild (STScI)

In the future, the team hopes to conduct further studies of this galaxy to further resolve its structure and nature, and to compare it to other spiral galaxies from this epoch. Of particular interest to them is when the onset of spiral arms takes place, which should serve as a sort of boundary marker between ancient elliptical galaxies and modern spiral, lenticular and irregular shapes.

They will continue to rely on the NIFS to conduct these studies, but the team also hopes to rely on data collected by the James Webb Space Telescope (which will be launched in 2019). These and other surveys in the coming years are expected to reveal vital information about the earliest galaxies in the Universe, and reveal further clues as to how it changed over time.

Further Reading: Swinburne, APJ

Hubble Looks Back In Time To See Shape Of Galaxies 11 Billion Years Ago

This image shows "slices" of the Universe at different times throughout its history (present day, and at 4 and 11 billion years ago). Each slice goes further back in time, showing how galaxies of each type appear. The shape is that of the Hubble tuning fork diagram, which describes and separates galaxies according to their morphology. Credit: NASA, ESA, M. Kornmesser

What we’re gonna’ do here is go back. Way back into time. Back to when the only thing that existed was… galaxies? When astronomers employed the power of Hubble’s CANDELS survey to observe different galaxy types from the distant past, they expected to see a variety of spiral, elliptical, lenticular and peculiar structures, but what they didn’t expect was that things were a whole lot more “peculiar” a long time ago!

Known as the Hubble Sequence, astronomers use this classified system for listing galaxy sizes, shapes and colors. It also arranges galaxies according to their morphology and star-forming activity. Up to the present, the Hubble Sequence covered about 80% of the Universe’s history, but the latest information shows that the sequence was valid as much as 11 billion years ago! Out of what we currently know, there are two dominant galaxy types – spiral and elliptical – with the lenticular structure as a median. Of course, this is constrained to the regions of space which we can readily observe, but how true did the sequence hold back when the Universe theoretically began?

“This is a key question: when and over what timescale did the Hubble Sequence form?” says BoMee Lee of the University of Massachusetts, USA, lead author of a new paper exploring the sequence. “To do this you need to peer at distant galaxies and compare them to their closer relatives, to see if they too can be described in the same way.”

Using the Hubble Space Telescope, astronomers took on the sequence challenge to peer back 11 billion years in time to study galaxy structure. Up until now, researchers could confirm the sequence was valid as long ago as 8 billion years, but these new studies pushed CANDELS, the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, to the outer limits. It is simply the largest project ever, and soaked up 902 assigned orbits of observing time. Using the WFC3 and ACS cameras, the team examined structures that existed less than one billion years after the Big Bang. While earlier studies had aimed for lower-mass galaxies in this era, no study had really taken on serious observation of mature structures – ones similar to our own galaxy. Now the new CANDELS observations show us that all galaxies, regardless of size, fit into a totally different classification!

“This is the only comprehensive study to date of the visual appearance of the large, massive galaxies that existed so far back in time,” says co-author Arjen van der Wel of the Max Planck Institute for Astronomy in Heidelberg, Germany. “The galaxies look remarkably mature, which is not predicted by galaxy formation models to be the case that early on in the history of the Universe.”

Just what did this study see that’s so different? Just the power of two. Galaxies were either complex, with blue star forming regions and irregular structures, or they were like our nearby neighbors: massive red galaxies that exhibit no new star-formation. In the early Universe, galaxies like the Milky Way were uncommon. With so little to study, it was nearly impossible to get a large enough sample to sufficiently catalog their characteristics. Early research could only peer back in visible light, a format which emphasized star formation and revealed the red-shifted ultraviolet emission of the galaxies. This information was inconclusive because galaxy structure appeared disrupted and unlike the formations we see near to us. Through the use of infra-red, astronomers could observe the now red-shifted massive galaxies in their visible rest frame. Thanks to CANDELS lighting the way, astronomers were able to thoroughly sample a significantly larger amount of mature galaxies in detail.

“The huge CANDELS dataset was a great resource for us to use in order to consistently study ancient galaxies in the early Universe,” concludes Lee. “And the resolution and sensitivity of Hubble’s WFC3 is second to none in the infrared wavelengths needed to carry out this study. The Hubble Sequence underpins a lot of what we know about how galaxies form and evolve — finding it to be in place this far back is a significant discovery.”

Original Story Source: ” Hubble Explores the Origins of Modern Galaxies” – Hubble News Release.