Antique Stars Could Help Solve Mysteries Of Early Milky Way

The Milky Way is like NGC 4594 (pictured), a disc shaped spiral galaxy with around 200 billion stars. The three main features are the central bulge, the disk, and the halo. Credit: ESO

[/caption]

Utilizing ESO’s giant telescopes located in Chile, researchers at the Niels Bohr Institute have been examining “antique” stars. Located at the outer reaches of the Milky Way, these superannuated stellar specimens are unusual in the fact that they contain an over-abundance of gold, platinum and uranium. How they became heavy metal stars has always been a puzzle, but now astronomers are tracing their origins back to our galaxy’s beginning.

It is theorized that soon after the Big Bang event, the Universe was filled with hydrogen, helium and… dark matter. When the trio began compressing upon themselves, the very first stars were born. At the core of these neophyte suns, heavy elements such as carbon, nitrogen and oxygen were then created. A few hundred million years later? Hey! All of the elements are now accounted for. It’s a tidy solution, but there’s just one problem. It would appear the very first stars only had about 1/1000th of the heavy-elements found in sun-like stars of the present.

How does it happen? Each time a massive star reaches the end of its lifetime, it will either create a planetary nebula – where layers of elements gradually peel away from the core – or it will go supernova – and blast the freshly created elements out in a violent explosion. In this scenario, the clouds of material once again coalesce… collapse again and form more new stars. It’s just this pattern which gives birth to stars that become more and more “elementally” concentrated. It’s an accepted conjecture – and that’s what makes discovering heavy metal stars in the early Universe a surprise. And even more surprising…

Right here in the Milky Way.

“In the outer parts of the Milky Way there are old ‘stellar fossils’ from our own galaxy’s childhood. These old stars lie in a halo above and below the galaxy’s flat disc. In a small percentage – approximately one to two percent of these primitive stars, you find abnormal quantities of the heaviest elements relative to iron and other ‘normal’ heavy elements”, explains Terese Hansen, who is an astrophysicist in the research group Astrophysics and Planetary Science at the Niels Bohr Institute at the University of Copenhagen.

The 17 observed stars are all located in the northern sky and could therefore be observed with the Nordic Optical Telescope, NOT on La Palma. NOT is 2.5 meter telescope that is well suited for just this kind of observations, where continuous precise observations of stellar motions over several years can reveal what stars belong to binary star systems.
But the study of these antique stars just didn’t happen overnight. By employing ESO’s large telescopes based in Chile, the team took several years to come to their conclusions. It was based on the findings of 17 “abnormal” stars which appeared to have elemental concentrations – and then another four years of study using the Nordic Optical Telescope on La Palma. Terese Hansen used her master’s thesis to analyse the observations.

“After slaving away on these very difficult observations for a few years I suddenly realised that three of the stars had clear orbital motions that we could define, while the rest didn’t budge out of place and this was an important clue to explaining what kind of mechanism must have created the elements in the stars”, explains Terese Hansen, who calculated the velocities along with researchers from the Niels Bohr Institute and Michigan State University, USA.

What exactly accounts for these types of concentrations? Hansen explains their are two popular theories. The first places the origin as a close binary star system where one goes supernova, inundating its companion with layers of heavier elements. The second is a massive star also goes supernova, but spews the elements out in dispersing streams, impregnating gas clouds which then formed into the halo stars.

The research group has analysed 17 stellar fossils from the Milky Way’s childhood. The stars are small light stars and they live longer than large massive stars. They do not burn hydrogen longer, but swell up into red giants that will later cool and become white dwarves. The image shows the most famous of the stars CS31082-001, which was the first star that uranium was found in.
“My observations of the motions of the stars showed that the great majority of the 17 heavy-element rich stars are in fact single. Only three (20 percent) belong to binary star systems – this is completely normal, 20 percent of all stars belong to binary star systems. So the theory of the gold-plated neighbouring star cannot be the general explanation. The reason why some of the old stars became abnormally rich in heavy elements must therefore be that exploding supernovae sent jets out into space. In the supernova explosion the heavy elements like gold, platinum and uranium are formed and when the jets hit the surrounding gas clouds, they will be enriched with the elements and form stars that are incredibly rich in heavy elements”, says Terese Hansen, who immediately after her groundbreaking results was offered a PhD grant by one of the leading European research groups in astrophysics at the University of Heidelberg.

May all heavy metal stars go gold!

Original Story Source: Niels Bohr Institute News Release. For Further Reading: The Binary Frequency of r-Process-element-enhanced Metal-poor Stars and Its Implications: Chemical Tagging in the Primitive Halo of the Milky Way.

Cosmic Collisions – The Astronomical Alchemist

[/caption]Here on Earth the practice of alchemy once had its era – trying to turn lead into gold. However, somewhere out there in the universal scheme of things, that process is a reality and not a myth. Instead of a scientist desperately looking for a sublime formula, it just might happen when neutron stars merge in a violent collision.

We’re all aware of the nuclear fusion manner in which elements are created from stars. Hydrogen is burned into helium, and so up the line until it reaches iron. It’s just the way stellar physics work and we accept it. To date, science has theorized that heavier elements were the creation of supernovae events, but new studies done by scientists of the Max Planck Institute for Astrophysics (MPA) and affiliated to the Excellence Cluster Universe and of the Free University of Brussels (ULB) indicate they may be able to form during encounters with ejected matter from neutron stars.

”The source of about half of the heaviest elements in the Universe has been a mystery for a long time,“ says Hans-Thomas Janka, senior scientist at the Max Planck Institute for Astrophysics (MPA) and within the Excellence Cluster Universe. ”The most popular idea has been, and may still be, that they originate from supernova explosions that end the lives of massive stars. But newer models do not support this idea.“

Although it might take millions of years for such a tryst to take place, it’s not impossible for two neutron stars in a binary system to eventually meet. Scientists at the MPA and the ULB have now simulated all stages of the processes through computer modeling and taken note at the formation of chemical elements which are the offspring.

”In just a few split seconds after the merger of the two neutron stars, tidal and pressure forces eject extremely hot matter equivalent to several Jupiter masses,“ explains Andreas Bauswein, who carried out the simulations at the MPA. Once this so-called plasma has cooled to less than 10 billion degrees, a multitude of nuclear reactions take place, including radioactive decays, and enable the production of heavy elements. ”The heavy elements are `recycled’ several times in various reaction chains involving the fission of super-heavy nuclei, which makes the final abundance distribution become largely insensitive to the initial conditions provided by the merger model,“ adds Stephane Goriely, ULB researcher and nuclear astrophysics expert of the team.

Their findings agree well with observations of abundance distributions in both the Solar System and old stars. When compared with possible neutron star collisions occurring in the Milky Way, the conclusions are the same – this speculation could very well be the explanation for the distribution of heavier elements. The team plans on continuing their studies while on the look out “for detecting the transient celestial sources that should be associated with the ejection of radioactive matter in neutron star mergers.” Like a supernova event, the heat from the radioactive decay will shine like… well…

Gold in the dark.

Original Story Source: Max Planck Institut News. For Further Reading: R-process nucleosynthesis in dynamically ejected matter of neutron star mergers.