Does Life Really Need Planets? Maybe Not

Newly discovered Earth-size planet TOI 700 e orbits within the habitable zone of its star in this illustration. New research questions whether planets are necessary for life. Image Credit: NASA/JPL-Caltech/Robert Hurt

Do we have a planetary bias when it comes to understanding where life can perpetuate? It’s only natural that we do. After all, we’re on one.

However, planets may not be necessary for life, and a pair of scientists from Scotland and the USA are inviting us to reconsider the notion.

Continue reading “Does Life Really Need Planets? Maybe Not”

Chitin Could be the Perfect Building Material on Mars

An artist's illustration of a Mars settlement. Image: Bryan Versteeg/MarsOne
An artist's illustration of an early Mars settlement. Credit: Bryan Versteeg/MarsOne

It’s hard to deny that we’re heading for a future with a human presence on Mars. But to develop sustained presence, there are an enormous number of technical problems to be worked out. One of those problems concerns manufacturing and building.

We can’t send everything people will need to Mars. We’ll need some way to build structures, and tools and other things.

Continue reading “Chitin Could be the Perfect Building Material on Mars”

Lava Tubes on the Moon and Mars are Really, Really Big. Big Enough to Fit an Entire Planetary Base

The first lava tube skylight discovered on the moon. Image credit: JAXA/SELENE

Could lava tubes on the Moon and Mars play a role in establishing a human presence on those worlds? Possibly, according to a team of researchers. Their new study shows that lunar and Martian lava tubes might be enormous, and easily large enough to accommodate a base.

Continue reading “Lava Tubes on the Moon and Mars are Really, Really Big. Big Enough to Fit an Entire Planetary Base”

Astronomy Cast Ep. 450: Inflatable Habitats

In order to live in space, we’ll need to live in a habitat that simulates the temperature, pressure and atmosphere of Earth. And one of the most interesting ideas for how to do this will be with inflatable habitats. In fact, there are a few habitats in the works right now, including one attached to the International Space Station.

Visit the Astronomy Cast Page to subscribe to the audio podcast!

We usually record Astronomy Cast as a live Google+ Hangout on Air every Friday at 1:30 pm Pacific / 4:30 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.

NASA Might Build an Ice House on Mars

Artist concept of the Mars Ice Home. Credit: NASA.

At first glance, a new concept for a NASA habitat on Mars looks like a cross between Mark Watney’s inflatable potato farm from “The Martian” and the home of Luke’s Uncle Owen on Tatooine from “Star Wars.”

The key to the new design relies on something that may or may not be abundant on Mars: underground water or ice.

The “Mars Ice Home” is a large inflatable dome that is surrounded by a shell of water ice. NASA said the design is just one of many potential concepts for creating a sustainable home for future Martian explorers. The idea came from a team at NASA’s Langley Research Center that started with the concept of using resources on Mars to help build a habitat that could effectively protect humans from the elements on the Red Planet’s surface, including high-energy radiation.

The Mars Ice Home concept. Credit: Clouds Architecture Office, NASA Langley Research Center,
Space Exploration Architecture.

Langley senior systems engineer Kevin Vipavetz who facilitated the design session said the team assessed “many crazy, out of the box ideas and finally converged on the current Ice Home design, which provides a sound engineering solution,” he said.

The advantages of the Mars Ice Home is that the shell is lightweight and can be transported and deployed with simple robotics, then filled with water before the crew arrives. The ice will protect astronauts from radiation and will provide a safe place to call home, NASA says. But the structure also serves as a storage tank for water, to be used either by the explorers or it could potentially be converted to rocket fuel for the proposed Mars Ascent Vehicle. Then the structure could be refilled for the next crew.

A cutaway of the interior of the Mars Ice Home concept. Credit: NASA Langley/Clouds AO/SEArch.

Other concepts had astronauts living in caves, or underground, or in dark, heavily shielded habitats. The team said the Ice Home concept balances the need to provide protection from radiation, without the drawbacks of an underground habitat. The design maximizes the thickness of ice above the crew quarters to reduce radiation exposure while also still allowing light to pass through ice and surrounding materials.

Team members of the Ice Home Feasibility Study discuss past and present technology development efforts in inflatable structures at NASA’s Langley Research Center.
Credits: Courtesy of Kevin Kempton/NASA.

“All of the materials we’ve selected are translucent, so some outside daylight can pass through and make it feel like you’re in a home and not a cave,” said Kevin Kempton, also part of the Langley team.

One key constraint is the amount of water that can be reasonably extracted from Mars. Experts who develop systems for extracting resources on Mars indicated that it would be possible to fill the habitat at a rate of one cubic meter, or 35.3 cubic feet, per day. This rate would allow the Ice Home design to be completely filled in 400 days, so the habitat would need to be constructed robotically well before the crew arrives. The design could be scaled up if water could be extracted at higher rates.

The team wanted to also include large areas for workspace so the crew didn’t have to wear a pressure suit to do maintenance tasks such as working on robotic equipment. To manage temperatures inside the Ice Home, a layer of carbon dioxide gas — also available on Mars — would be used as in insulation between the living space and the thick shielding layer of ice.

“The materials that make up the Ice Home will have to withstand many years of use in the harsh Martian environment, including ultraviolet radiation, charged-particle radiation, possibly some atomic oxygen, perchlorates, as well as dust storms – although not as fierce as in the movie ‘The Martian’,” said Langley researcher Sheila Ann Thibeault.

Find out more about the concept here.

Another cutaway of the interior design of the Mars Ice Home concept. Credit: NASA Langley/ Clouds AO/SEArch.