Wow! Epic 4K Timelapse of Aurora Over Iceland and Greenland

Holy Northern Lights, Batman! This new timelapse is just beautiful! Photographer Joe Capra traveled to Greenland and Iceland to shoot 10 nights of the arctic Aurora. Not only was the aurora absolutely stunning, but the landscape is equally beautiful. Joe said that all the footage was shot in super high resolution 4K Ultra HD, and you can even see the bright aurora reflected in small rivers and streams.

Here are some of the locations Joe shot the footage: Greenland locations include the Kangerlussuaq, Ilulissat, Ilimanaq, Ilulissat Ice Fjord, Russell Glacier, Greenland Icecap, and Disko Bay. Iceland locations include the South Coast, Snæfellsnes Peninsula, Kirkjufell, and Grundarfjörður.

Check out more of Joe’s work at his website Scientifantastic.

Two Lands – Greenland | Iceland from SCIENTIFANTASTIC on Vimeo.

Scientists Now Suspect More Sea Level Rise from Greenland’s Glaciers

Greenland’s glaciers may contribute more to future sea level rise than once thought, despite earlier reports that their steady seaward advance is a bit slower than expected. This is just more sobering news on the current state of Earth’s ice from the same researchers that recently announced the “unstoppable” retreat of West Antarctic glaciers.

Using data collected by several international radar-mapping satellites and NASA’s airborne Operation IceBridge surveys, scientists at NASA and the University of California, Irvine have discovered deep canyons below the ice sheet along Greenland’s western coast. These canyons cut far inland, and are likely to drive ocean-feeding glaciers into the sea faster and for longer periods of time as Earth’s climate continues to warm.

Some previous models of Greenland’s glaciers expected their retreat to slow once they receded to higher altitudes, making their overall contribution to sea level increase uncertain. But with this new map of the terrain far below the ice, modeled with radar soundings and high-resolution ice motion data, it doesn’t seem that the ice sheets’ recession will halt any time soon.

According to the team’s paper, the findings “imply that the outlet glaciers of Greenland, and the ice sheet as a whole, are probably more vulnerable to ocean thermal forcing and peripheral thinning than inferred previously from existing numerical ice-sheet models.”

Read more: Scientists Set Their Sights on Arctic Ice Loss

Watch a video of the new topography map below:

“The glaciers of Greenland are likely to retreat faster and farther inland than anticipated, and for much longer, according to this very different topography we have discovered. This has major implications, because the glacier melt will contribute much more to rising seas around the globe.

– Mathieu Morlighem, project scientist, University of California, Irving

Many of the newly-discovered canyons descend below sea level and extend over 65 miles (100 kilometers) inland, making them vulnerable — like the glaciers in West Antarctica — to undercutting by warmer ocean currents.

The team’s findings were published on May 18 in a report titled Deeply Incised Submarine Glacial Valleys Beneath the Greenland Ice Sheet in the journal Nature Geoscience.

Source: NASA/JPL press release & University of California,Irvine News

_______________

What would happen if all the ice on land melted into the ocean? Find out what the world would look like here.

Massive ‘Grand Canyon’ Found Hidden Beneath Greenland’s Ice

There’s a “Chuck Norris fact” that says Chuck once went skydiving but promised never to do it again, saying one Grand Canyon is enough. But Chuck must have taken another jump millions of years ago.

Data gathered by NASA’s Operation IceBridge, an aerial science observation mission, has uncovered a previously unknown massive canyon in Greenland, hidden under a kilometer of ice.

The canyon, found by airborne radar data, has the same characteristics of a winding river channel like the Grand Canyon in Arizona. It is at least 750 kilometers (460 miles) long, making it longer than the Grand Canyon. In some places, it is as deep as 800 meters (2,600 feet), on scale with parts of the Grand Canyon. This immense feature is thought to predate the ice sheet that has covered Greenland for the last few million years.

“One might assume that the landscape of the Earth has been fully explored and mapped,” said Jonathan Bamber, professor of physical geography at the University of Bristol in the United Kingdom, and lead author of the study. “Our research shows there’s still a lot left to discover.”

While additional airborne radar data was used, the majority of the data was collected by IceBridge flights over Greenland during flights from 2009 to 2013. IceBridge’s Multichannel Coherent Radar Depth Sounder can see through vast layers of ice to measure its thickness and the shape of bedrock below.

In their analysis of the radar data, Bamber and his team discovered a continuous bedrock canyon that extends from almost the center of the island and ends beneath the Petermann Glacier fjord in northern Greenland.

At certain frequencies, radio waves can travel through the ice and bounce off the bedrock underneath. The amount of time the radio waves took to bounce back helped researchers determine the depth of the canyon. The longer it took, the deeper the bedrock feature.

The researchers believe the canyon plays an important role in transporting sub-glacial meltwater from the interior of Greenland to the edge of the ice sheet into the ocean. Evidence suggests that before the presence of the ice sheet, as much as 4 million years ago, water flowed in the canyon from the interior to the coast and was a major river system.

“It is quite remarkable that a channel the size of the Grand Canyon is discovered in the 21st century below the Greenland ice sheet,” said Studinger. “It shows how little we still know about the bedrock below large continental ice sheets.”

The IceBridge campaign will return to Greenland in March 2014 to continue collecting data on land and sea ice in the Arctic using a suite of instruments that includes ice-penetrating radar.

Bamber and his team had their findings published in the journal Science.

Source: NASA

Meet GROVER the Rover, Set For Greenland Exploration

How fast is Greenland’s ice sheet melting in response to climate change, and how is it recovering? A new NASA rover with the friendly name of GROVER (Greeland Rover and Goddard Remotely Operated Vehicle for Exploration and Research) is going to try to figure that out.

GROVER will rove across a small area of the massive ice sheet at a location called Summit Camp, which is a National Science Foundation outpost. On board it has ground-penetrating radar that is intended to figure out how the snow builds up in layers through time.

“Robots like GROVER will give us a new tool for glaciology studies,” stated Lora Koenig, a glaciologist at Goddard and science advisor on the project.

A prototype of GROVER during testing in January 2012. The rover does not have its solar panels attached here. The laptop was used as part of that specific test only. Credit: Gabriel Trisca, Boise State University
A prototype of GROVER during testing in January 2012. The rover does not have its solar panels attached here. The laptop was used as part of that specific test only. Credit: Gabriel Trisca, Boise State University

The student-designed project came to be during development phases in 2010 and 2011, principally at Boise State University in Idaho. At six feet tall, it’s way more massive than its Sesame Street namesake: it tips the scale at 800 pounds, including solar panels, and has two snowmobile tracks built in to move around.

“GROVER is just like a spacecraft but it has to operate on the ground,” stated Michael Comberiate, a retired NASA engineer and manager of Goddard’s Engineering Boot Camp.

“It has to survive unattended for months in a hostile environment, with just a few commands to interrogate it and find out its status and give it some directions for how to accommodate situations it finds itself in.”

Studies began on May 3 and will continue through June 8.

Source: NASA

NASA Scientists Soar Over a Mini Ice Cap

It’s quite a long way from Mars, but I can’t help but be reminded of the Red Planet’s ice-covered north pole when looking at this photo taken by Michael Studinger earlier this month, during a recent IceBridge survey flight over Greenland.

Called Saunders Island (also Appat Island) the 82-square-mile frozen slab of rock rises from the sea off the coast of northwestern Greenland, one of many islands within the Wolstenholme (Uummannaq) Fjord on the shore of Baffin Bay. Operation IceBridge, a six-year aerial survey of the changing ice coverage at our planet’s poles, is run by NASA to provide valuable ground-level information to supplement satellite data.

To me, the shape of the island’s steep rock faces and rugged inlets slice into its interior bear a striking resemblance to Mars’ ice cap.

Mars' north polar ice cap
Mars’ north polar ice cap

While Mars’ ice cap is shaped by very different processes — and obviously much bigger — you might see the connection too!

But rather than dark Martian dunes, sea ice can be seen surrounding the islands in varying thicknesses in the IceBridge photo above. Sea ice coverage in the fjord ranges from thicker, white ice in the background to thinner “grease” ice and leads with dark, open ocean water in the foreground.

The IceBridge P-3B airborne laboratory in a hangar at Wallops Flight Facility (NASA/George Hale)
The IceBridge P-3B airborne laboratory in a hangar at Wallops Flight Facility (NASA/George Hale)

As the amount of darker, ice-free water surfaces increase over the course of the year due to rising global temperatures, the more heat from solar radiation is collected in the ocean — thus speeding up the process of seasonal sea ice loss and overall Arctic warming.

Read more about the IceBridge mission here, and see a collection of more photos from this season’s flights here.

NASA’s Operation IceBridge images Earth’s polar ice in unprecedented detail to better understand processes that connect the polar regions with the global climate system. IceBridge utilizes a highly specialized fleet of research aircraft and the most sophisticated suite of innovative science instruments ever assembled to characterize annual changes in thickness of sea ice, glaciers, and ice sheets. In addition, IceBridge collects critical data used to predict the response of earth’s polar ice to climate change and resulting sea-level rise.

 

An Enormous Arctic Spiral

Looking south across the southern tip of Greenland, this satellite image shows an enormous cloud vortex spiraling over the northern Atlantic ocean on January 26, 2013. An example of the powerful convection currents in the upper latitudes, these polar low cyclones are created when the motion of cold air is energized by the warmer ocean water beneath.

Sometimes referred to as Arctic cyclones, these spiraling storms can bring gale-force winds and heavy snowfall over a wide area of ocean during their 12- to 36-hour lifespans. Hurricane-type storms don’t only form in the tropics!

This image was captured by the MODIS instrument on NASA’s Aqua satellite from its polar orbit 705 km (438 miles) above the Earth. The view has been rotated so south is up; the southernmost tip of Greenland can be seen at lower right. Click for an impressive high-resolution view.

Image via EOSNAP/Chelys

NASA Satellite Sees Ghostly Remains of Vanishing Arctic Sea Ice

Sea ice swirls in ocean currents off the coast of Greenland (NASA/GSFC)

Spooky spectral swirls of last season’s sea ice drift in currents off the coast of eastern Greenland in this image from NASA’s Aqua satellite, acquired on October 17. Although sea ice in the Arctic will start forming again after September’s record low measurements, these ghostly wisps are likely made up of already-existing ice that has migrated south.

As global temperatures rise — both over land and in the ocean — thinner sea ice builds up during the Arctic winter and thus more of it melts during the summer, a pattern that will eventually lead to an ice-free Arctic if trends continue. The past several years saw sea ice in the Arctic below the 1979-2000 average, with this past September displaying the lowest volumes yet recorded.

The graph below, made from data modeled by the Polar Science Center at the University of Washington, show the chilling — or, perhaps, not-so-chilling — results of this century’s recent observations.

Along Greenland’s east coast, the Fram Strait serves as an expressway for sea ice moving out of the Arctic Ocean. The movement of ice through the strait used to be offset by the growth of ice in the Beaufort Gyre.

Until the late 1990s, ice would persist in the gyre for years, growing thicker and more resistant to melt. Since the start of the twenty-first century, however, ice has been less likely to survive its trip through the southern part of the Beaufort Gyre. As a result, less Arctic sea ice has been able to pile up and form multi-year ice.

Thin, free-drifting ice — as seen above — moves very easily with winds and currents.

Aqua is a NASA Earth Science satellite mission named for the large amount of information that the mission is collecting about the Earth’s water cycle, including evaporation from the oceans, water vapor in the atmosphere, clouds, precipitation, soil moisture, sea ice, land ice, and snow cover on the land and ice. Aqua was launched on May 4, 2002, and carries six Earth-observing instruments in a near-polar low-Earth orbit. MODIS, which acquired the image above, is a 36-band spectroradiometer that measures physical properties of the atmosphere, oceans and land.

Source: NASA Earth Observatory

NASA image courtesy Jeff Schmaltz, LANCE MODIS Rapid Response Team at NASA GSFC. Graph by Jesse Allen based on modeled ice volume data from the Polar Science Center, University of Washington. Caption portions by Michon Scott with information from Ted Scambos, National Snow and Ice Data Center.

Greenland Glacier Calves Another Huge Ice Island

Petermann glacier, a 70 km (43 mile) long tongue of ice that flows into the Arctic Ocean in northwest Greenland, recently calved an “ice island” approximately 130 square kilometers (50 sq. miles) — about twice the area of Manhattan. The image above, acquired by NASA’s Terra satellite, shows the ice island as it drifts toward the ocean five days after breaking off the main glacier.

Petermann glacier has been known for birthing massive ice islands; previously in August 2010 an even larger island broke away from the glacier, measuring 251 square kilometers (97 sq. miles). That slab of ice eventually drifted into the northern Atlantic and was even visible from the Space Station a year later!

Read: Manhattan-Sized Ice Island Seen From Space

Although some of Greenland’s glaciers have been observed to be quickening their seaward pace as a result of global warming, this particular calving event — which occurred along a crack that appeared in 2001 satellite imagery — isn’t thought to be a direct result of climate but rather of ocean currents and isn’t expected to have any significant effect on the rate of Greenland’s ice loss as a whole. Still, satellite observation of such events provides valuable data for researchers monitoring the processes that are involved with rapidly accelerating Arctic ice loss.

And if you want an idea of what a slab of ice this large looks like up close, here’s a video taken by researchers on approach to a smaller chunk of the 2011 island:

NASA Earth Observatory image by Jesse Allen, using data from NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team. (NASA/Terra)

Oldest Impact Crater on Earth Discovered in Greenland

Artistic expression of large meteorite impact

With shifting continents, rain, and wind, finding traces of ancient impact craters on Earth has been, literally, astronomically low. Now, an international team of scientists say they have found a massive impact crater in Greenland a billion years older than other known asteroid impact on Earth.

Scientists found the remains of the giant 100-kilometer (62 mile) wide crater near the Maniitsoq region of West Greenland and they believe it’s three billion years old. The largest and previously oldest known crater is the 300 kilometer-wide Vredefort crater in South Africa. Tipped on its side, the edges of the Maniitsoq crater would extend from the surface of the Earth to the edge of space.


“This single discovery means that we can study the effects of cratering on the Earth nearly a billion years further back in time than was possible before,” according to Dr. Iain McDonald of the School of Earth and Ocean Sciences at Cardiff University, who was part of the team.

Finding the crater wasn’t an easy task. Today, the Moon still shows marks of the massive bombardment that took place between three and four billion years ago. The early Earth, with its greater gravitational attraction, would have experienced even more collisions. But the land around Maniitsoq has been eroded over the eons to expose crust that originally was 25 kilometers (16 miles) below the surface. Effects of the immense shockwave produced on impact penetrated deep into the crust and remain visible.

Evidence at that depth had never been observed before, says McDonald. “The process was rather like a Sherlock Holmes story,” said McDonald. “We eliminated the impossible in terms of any conventional terrestrial processes, and were left with a giant impact as the only explanation for all of the facts.”

Only about 180 impact craters have been discovered on Earth. Around 30 percent of them contain important natural resources, including nickel, gold, oil and natural gas. It was during an exploration of natural resources that evidence for the crater was discovered. “It has taken us nearly three years to convince our peers in the scientific community,” said McDonald. “But the mining industry was far more receptive. A Canadian exploration company has been using the impact model to explore for deposits of nickel and platinum metals at Maniitsoq since the autumn of 2011.”

The international team, led by Adam Garde, a senior research scientist at the Geological Survey of Denmark and Greenland, or GEUS, contains members from Cardiff, Lund University in Sweden, and the Institute of Planetary Science in Moscow. Their work was recently published in the jounal Earth and Planetary Science Letters.

Image caption: An artistic expression of how a large meteorite impact into the sea might have looked in the first second of the impacting. We do not know if the area that was hit was actually covered by water or if there was just a sea nearby. Source: Carsten Egestal Thuesen, GEUS

Map caption: Black circle on map shows the location of the meteorite impact structure near the town Maniitsoq in Greenland.

Read more about the Maniitsoq structure.

Scientists Set Their Sights on Arctic Ice Loss

[/caption]

NASA researchers have just completed science mission flights over Greenland and the surrounding seas, gathering data on ice distribution and thickness with the MABEL (Multiple Altimeter Beam Experimental Lidar) laser altimeter instrument mounted in the nose of an ER-2 aircraft. WIth MABEL’s unprecedented ability to detect individual photons, researchers will be able to even more accurately determine how Arctic ice sheets are behaving in today’s changing climate.

At the same time, news has come in from researchers with the University of Washington, who have completed a NASA- and NSF-funded study of the enormous island’s glaciers spanning a ten-year period. What they have found is that the glaciers have been increasing in speed about 30% over the past ten years — which is actually less than earlier studies had anticipated.

“In some sense, this raises as many questions as it answers. It shows there’s a lot of variability,” said Ian Joughin, a glaciologist in the UW’s Applied Physics Laboratory and coauthor of the paper, published May 4 in Science.

Previous research had suggested that Greenland’s melting glaciers could contribute up to 19 inches to global sea level rise by 2100. But the behavior of Greenland’s vast ice fields and ocean-draining glaciers was not yet thoroughly researched. Based on this new study, the outlet glaciers have not sped up as much as expected.

Still, ocean-draining (a.k.a. marine-terminating) glaciers move much faster than their land-based counterparts, and the UW researchers have found that their speeds are increasing on average — up to 32% in some areas.

The team realizes that the study may just not have observed a long enough period of time. (These are glaciers, after all!)

Icebergs calve from the edge of Greenland's Gyldenlove glacier in April 2011. (NASA/GSFC/Michael Studinger)

“There’s the caveat that this 10-year time series is too short to really understand long-term behavior, so there still may be future events – tipping points – that could cause large increases in glacier speed to continue,” said Ian Howat, an assistant professor of earth sciences at Ohio State University and a co-author of the paper. “Or perhaps some of the big glaciers in the north of Greenland that haven’t yet exhibited any changes may begin to speed up, which would greatly increase the rate of sea level rise.”

What the researchers didn’t find was any evidence that the rate of flow is slowing down. Though the true extent of the effect of Greenland’s ice on future sea level rise may not be unerringly predictable down to the inch or centimeter, even at the currently observed rate a contribution of 4 or more inches by the end of the century is still very much a possibility.

Meanwhile, the data gathered from the MABEL science flights over the past four weeks will be used to calibrate NASA’s next-generation ice-observing satellite, IceSat-2, planned for launch in 2016. Once in orbit, IceSat-2 will provide even more detailed insight to the complex behavior of our planet’s ice sheets.

Read more on the UW News release here.