How Strong is Gravity on Other Planets?

Gravity is a fundamental force of physics, one which we Earthlings tend to take for granted. You can’t really blame us. Having evolved over the course of billions of years in Earth’s environment, we are used to living with the pull of a steady 1 g (or 9.8 m/s²). However, for those who have gone into space or set foot on the Moon, gravity is a very tenuous and precious thing.

Basically, gravity is dependent on mass, where all things – from stars, planets, and galaxies to light and sub-atomic particles – are attracted to one another. Depending on the size, mass and density of the object, the gravitational force it exerts varies. And when it comes to the planets of our Solar System, which vary in size and mass, the strength of gravity on their surfaces varies considerably.

Continue reading “How Strong is Gravity on Other Planets?”

What are Wormholes?

What are Wormholes?

In science fiction, wormholes are a method often used to travel great distances across space. Are these magic bridges really possible?

With all my enthusiasm for humanity’s future in space, there’s one glaring problem. We’re soft meat bags of mostly water, and those other stars are really really far away. Even with the most optimistic spaceflight technologies we can imagine, we’re never going to reach another star in a human lifetime.

Reality tells us that even the most nearby stars are incomprehensibly far away, and would require vast amounts of energy or time to make the journey. Reality says that we’d need a ship that can somehow last for hundreds or thousands of years, while generation after generation of astronauts are born, live their lives and die in transit to another star.

Science fiction, on the other hand, woos us with its beguiling methods of advanced propulsion. Crank up the warp drive and watch the stars streak past us, making a journey to Alpha Centauri as quick as a pleasure cruise.

You know what’s even easier? A wormhole; a magical gateway that connects two points in space and time with one another. Just align the chevrons to dial in your destination, wait for the stargate to stabilize and then just walk… walk! to your destination half a galaxy away.

Yeah, that would be really nice. Someone should really get around to inventing these wormholes, ushering in a bold new future of intergalactic speedwalking. What are wormholes, exactly, and how soon until I get to use one?.

A wormhole, also known as an Einstein-Rosen bridge is a theoretical method of folding space and time so that you could connect two places in space together. You could then travel instantaneously from one place to another.

We’ll use that classic demonstration from the movie Interstellar, where you draw a line from two points, on a piece of paper and then fold the paper over and jab your pencil through to shorten the journey. That works great on paper, but is this actual physics?

As Einstein taught us, gravity isn’t a force that pulls matter like magnetism, it’s actually a warping of spacetime. The Moon thinks it’s just following a straight line through space, but it’s actually following the warped path created by the Earth’s gravity.

And so, according to Einstein and physicist Nathan Rosen, you could tangle up spacetime so tightly that two points share the same physical location. If you could then keep the whole thing stable, you could carefully separate the two regions of spacetime so they’re still the same location, but separated by whatever distance you like.

Climb down the gravitational well of one side of the wormhole, and then instantaneously appear at the other location. Millions or billions of light-years away. While wormholes are theoretically possible to create, they’re practically impossible from what we currently understand.

Albert Einstein, pictured in 1953. Photograph: Ruth Orkin/Hulton Archive/Getty Images Ruth Orkin/Getty
Albert Einstein, pictured in 1953. Photograph: Ruth Orkin/Hulton Archive/Getty Images Ruth Orkin/Getty

The first big problem is that wormholes aren’t traversable according to General Relativity. So keep this in mind; the physics that predicts these things, prohibits them from being used as a method of transportation. That’s a pretty serious strike against them.

Second, even if wormholes can be created, they’d be completely unstable, collapsing instantly after their formation. If you tried to walk into one end, you might as well be walking into a black hole.

Third, even if they are traversable, and can be kept stable, the moment any material tried to pass through – even photons of light – that would make them collapse.

There’s a glimmer of hope, though, because physicists still haven’t figured out how to unify gravity and quantum mechanics.

This means that the Universe itself might know things about wormholes that we don’t understand yet. It’s possible that they were created naturally as part of the Big Bang, when the spacetime of the entire Universe was tangled up in a singularity.

Astronomers have actually proposed searching for wormholes in space by looking for how their gravity distorts the light from stars behind them. None have turned up yet.

One possibility is that wormholes appear naturally like the virtual particles that we know exist. Except these would be incomprehensibly small, on the Planck scale. You’re going to need a smaller spacecraft.

Artist illustration of a spacecraft passing through a wormhole to a distant galaxy. Image credit: NASA.
Artist illustration of a spacecraft passing through a wormhole to a distant galaxy. Image credit: NASA.

One of the most fascinating implications of wormholes is that they could allow you to actually travel in time.

Here’s how it works. First, create a wormhole in the lab. Then take one end of the wormhole, put it on a spacecraft and fly away at a significant percentage of the speed of light, so that time dilation takes effect.

For the people on the spacecraft, just a few years will have occurred, while it could have been hundreds or even thousands for the folks back on Earth. Assuming you could keep the wormhole stable, open and traversable, then traveling through it would be interesting.

If you passed in one direction, you’d not only move the distance between the wormholes, but you’d also be transported to the time that the wormhole is experiencing. Go one direction and you move forward in time, go the other way: backwards in time.

Some physicists, like Leonard Susskind think this wouldn’t work because this would violate two of physics most fundamental principles: local energy conservation and the energy-time uncertainty principle.

Unfortunately, it really seems like wormholes will need to remain in the realm of science fiction for the foreseeable future, and maybe forever. Even if it’s possible to create wormholes, then you’ve got the keep them stable and open, and then you’ve got to figure out how to allow matter into them without collapsing. Still, if we could figure it out, that’d make space travel very convenient indeed.

If you could set up two ends of a wormhole to anywhere in the Universe, where would they be? Tell us your ideas in the comments below.

Did We Need the Moon for Life?

Did We Need the Moon for Life?

Astronomers hate the Moon because it ruins perfectly good observing nights. But is it possible that we all need the Moon for our very existence?

For all we know, Earth is the only place in the Universe where life appeared. This makes the mystery of our existence even more puzzling. What were all the factors required to bring about the first lifeforms on our planet, and encourage the evolution of more complex, intelligent lifeforms.

We needed a calm and reasonable Sun, solid ground, nice temperatures, the appropriate chemicals, and liquid water. Possibly drinks served in pineapples with little umbrellas. But what about the Moon? Is the Moon a necessity for life in any way?

To the best of our knowledge, our Moon was formed when a Mars-sized object smashed into the Earth about 4.5 billion years ago. This enormous collision spun out a cloud of debris that coalesced into the Moon we know and love today.

Back then, the Moon was much closer to the Earth than it is today, a mere 20-30,000 kilometers. A fraction of its current distance. If you could have stood on the surface of the Earth, the Moon would have looked 10 to 20 times bigger than we see it today.

But nobody did, because the Earth was a molten ball of red hot magma, tasty lava through and through. Life emerged 3.8 billion years ago, pretty much the day after Earth had cooled down to the point that it was possible for life to form.

Scientists think that it first formed in the oceans, where there were adequate temperatures and abundant water as a solvent for life’s chemicals to mix.

The effect of gravity is a cube of its distance. When the Moon was closer, the power of its gravity to pull the Earth’s water around was more ferocious. But what impact has this gravity had on our world and its life? Do we need the Moon to make the magic happen?

Turns out, we might owe our very existence to it because its pull of gravity might have set our plate tectonics in motion. Without plate tectonics, our planet might be more like Venus, toasty and dead.

Map of the Earth showing fault lines (blue) and zones of volcanic activity (red). Credit: zmescience.com
Map of the Earth showing fault lines (blue) and zones of volcanic activity (red). Credit: zmescience.com

It raises the level of the world’s oceans towards the equator. Without this gravity, the oceans would redistribute, raising levels at the poles. It has also slowed Earth’s rotation on its axis. Shortly after its formation, the Earth turned once every 6 hours. Without that Moon to slow us down, we’d have much more severe weather.

It stabilizes the Earth’s rotation on its axis. It’s possible that the Earth might have rolled over on its axis on a regular basis, causing a complete redistribution of the Earth’s water. Astronomers think this happened on Mars, because it never had a large Moon to stabilize it.

But the biggest impact that the Moon has on life is through tides. That regular movement of water that exposes the land at the edge of the ocean, and then covers it again just a few hours later. This could have encouraged life to adapt and move from the oceans to land.

One of the most subtle effects from the Moon is what it has done to life itself. Nocturnal animals behave differently depending on where the Moon is in the sky during its 29.5-day cycle. When the Moon is full and bright, prey fish stay hidden in the reef, when they’d be most visible.

Prey fish in the reef. Credit: Laslo Ilyes
Prey fish in the reef. Credit: Laslo Ilyes

Amazingly, lions are less likely to hunt during the full Moon, and researchers have found that lion attacks on humans happen 10 days after the full Moon, and many bats will be less active during the full Moon.

With so many species on Earth affected by the Moon, it’s reasonable to think that there would have been a different evolutionary direction for life on Earth over the eons, and humans might never have evolved.

It looks like the Moon is important after all. Important to the geology of Earth, and important to the evolution of life itself.

As extrasolar planet hunters search for new worlds, and determine their viability for life, they might want to focus on the worlds with moons first.

What impact has the Moon had on your life? Post your anecdotes in the comments!

What is Tidal Locking?

What is Tidal Locking?

The Moon is tidally locked to the Earth, which means that it always shows one face to our planet. In fact, this is the case for most the large moons in the Solar System. What’s the process going on to make this happen?

Just look at the Moon, isn’t it beautiful? Take out a nice pair of binoculars, or a small telescope tonight and you’ll be able to see huge craters and ancient lava plains. Look again tomorrow, and you’ll be able to see… the exact same things. As you know, our modest Moon only shows us one face. Ever.

If you could look at the Moon orbiting the Earth from above, you’d see that it orbits once on its axis exactly as long as it takes to orbit once around our planet. It’s always turning, showing us exactly the same face. What’s it hiding?

The Moon isn’t the only place in the Solar System where this happens. All major moons of Jupiter and Saturn show the same face to their parent. Pluto and Charon are even stranger, the two worlds are locked, facing one another for all eternity. Astronomers call this tidal locking, and happens because of the gravitational interaction between worlds.

As you’re aware, the Moon is pulling at the Earth, causing the tides. In fact, the pull of the Moon is so strong that the ground itself rises up 30 cm, about a foot, as it passes by.

It’s even more powerful on the Moon. The gravity from the Earth distorts the Moon into an oblong shape. The sides pointed towards and away from the Earth bulge outward, while the others are pulled inward to compensate. It makes the Moon football shaped.

It’s no big deal now, but in the ancient past, shortly after its formation, the Moon was spinning rapidly. This meant that the part of the Moon bulged towards us was changing constantly, like water tides on Earth.

Vast amounts of rock need to shift and change shape to bulge towards the Earth and then settle down again, and this takes time. The position of the bulges on the Moon were always a little out of alignment with the pull of gravity of the Earth.

These bulges acted like handles that the Earth’s gravity could grab onto, and torque it back into place. Over time, the Earth’s gravity slowed down the rotation speed of the Moon until it stopped, forever.

Size comparison of all the Solar Systems moons. Credit: The Planetary Society
Size comparison of all the Solar Systems moons. Credit: The Planetary Society

This same process happened on all the large moons in the Solar System.
Because of its smaller mass, our Moon became tidally locked to the Earth billions of years ago. Now the process is continuing to make the Earth tidally locked to the Moon as well.

In the distant distant future, the Moon will stop moving in the sky, and hang motionless, visible from only half the Earth.

How distant? In about 50 billion years, long after the Sun has died, the Earth and the Moon will finally be tidally locked to each other, just like Romeo and Juliet, Fry and Leela, Pluto and Charon. The force of gravity is a powerful thing. Powerful enough to stop a moon in its tracks.

Did you have any other questions about the Moon? Post your suggestions in the comments and we’d be glad to make more videos and dig deeper!

Is Jupiter Our Friend Or Enemy?

Is Jupiter Our Friend Or Enemy?

Like me, you’re probably a little ego-geocentric about the importance of Earth. It’s where you were born, it’s where you keep all your stuff. It’s even where you’re going to die – I know, I know, not you Elon Musk, you’re going to “retire” on Mars, right after you nuke the snot out of it.

For the rest of us, Earth is the place. But in reality, when it comes to planets, this is somebody else’s racket. This is Jupiter’s Solar System, and we all sleep on its couch.

Jupiter accounts for 75% of the mass of the planets of the Solar System, nearly 318 times more massive than Earth, and isn’t just the name of everyone’s favorite secret princess. It’s the 1.9 × 10^27 kilogram gorilla in the room. Whatever Jupiter wants, Jupiter gets. Jupiter hungry? JUPITER HUNGRY.

What Jupiter apparently wants is to throw our stuff around the Solar System. Thanks to its immense gravity, Jupiter yanks material around in the asteroid belt, preventing the poor space rocks from ever forming up into anything larger than Ceres.

Jupiter gobbles up asteroids, comets, and spacecraft, and hurtles others on wayward trajectories. Who knows how much mayhem and destruction Jupiter has gotten into over the course of its 4.5 billion years in the Solar System.

Some scientists think we owe our existence to Jupiter’s protective gravity. It greedily vacuums up dangerous asteroids and comets in the Solar System.

Other scientists totally disagree and think that Jupiter is a bully, perturbing perfectly safe comets and asteroids into dangerous trajectories and flushing earth’s head in the toilet during recess.

Which is it? Is Jupiter our friend and protector, or evil enemy. We’ve already figured out how to dismantle you Jupiter, don’t make us put our plans into action.

Some of the most dangerous objects in the Solar System are long-period comets. These balls of rock and ice come from the deepest depths of the Oort cloud. Some event nudges these death missiles into trajectories that bring them into the inner Solar System, to shoot past the Sun and maybe, just maybe, smash into a planet and kill 99.99999% of the life on it.

The Solar System. Credit: NASA
The Solar System. Credit: NASA

There’s a pretty good chance some of the biggest extinctions in the history of the Earth were caused by impacts by long period comets.

As these comets make their way through the Solar System, they interact with Jupiter’s massive gravity, and get pushed this way and that. As we saw with Comet Shoemaker-Levy, some just get consumed entirely, like a tasty ice-rock sandwich.

The theory goes that Jupiter pushes these dangerous comets out of their murder orbits so they don’t smash into Earth and kill us all.

But a competing theory says that Jupiter actually diverts comets that would have completely missed our planet into deadly, Earth-killing trajectories.

Will the Sailor Scouts provide us any clues? Who can say?

Fragmentation of comets is common. Many sungrazers are broken up by thermal and tidal stresses during their perihelions. At top, an image of the comet Shoemaker-Levy 9 (May 1994) after a close approach with Jupiter which tore the comet into numerous fragments. An image taken by Andrew Catsaitis of components B and C of Comet 73P/Schwassmann–Wachmann 3 as seen together on 31 May 2006 (Credit: NASA/HST, Wikipedia, A.Catsaitis)
At top, an image of the comet Shoemaker-Levy 9 (May 1994) after a close approach with Jupiter which tore the comet into numerous fragments. An image taken by Andrew Catsaitis of components B and C of Comet 73P/Schwassmann–Wachmann 3 as seen together on 31 May 2006 (Credit: NASA/HST, Wikipedia, A.Catsaitis)

Here’s friend of the show, Dr. Kevin Grazier, a planetary scientist and scientific advisor for many of your favorite sci-fi TV shows and movies.

… [ see video for Interview with Dr. Grazier about Jupiter]

So which is it? Is Jupiter our friend or enemy? We’ll need to run more simulations and figure this out with more accuracy. And until then, it’s probably best if we just tremble in fear and worship Jupiter as a dark and capricious god until the evidence proves otherwise. It’s what Pascal would wager.

What are some other theories you’ve heard about and you’d like us to dig in further? Make some suggestions in the comments below.

Thanks for watching! Click subscribe, never miss an episode.
If you’re into other facts about our Solar system here’s a link to our Solar system playlist. Thanks to Ben Johnson and Tal Ghengis, and the members of the Guide to Space community who keep these shows rolling. Love space science? Want to see episodes before anyone else? Get extras, contests, and shenanigans with Jay, myself and the rest of the team. Get in on the action. Click here.

Is the Universe Dying?

Is the Universe Dying?

Is our 13.8 billion year old universe actually in its death throes?

Poor Universe, its demise announced right in it’s prime. At only 13.8 billion years old, when you peer across the multiverse it’s barely middle age. And yet, it sadly dwindles here in hospice.

Is it a Galactus infestation? The Unicronabetes? Time to let go, move on and find a new Universe, because this one is all but dead and gone and but a shell of its former self.

The news of imminent demise was recently broadcast in mid 2015. Based on research looking at the light coming from over 200,000 galaxies, they found that the galaxies are putting out half as much light as they were 2 billion years ago. So if our math is right, less light equals more death.

So tell it to me straight, Doctor Spaceman(SPAH-CHEM-AN), how long have we got? Astronomers have known for a long time that the Universe was much more active in the distant past, when everything was closer and denser, and better. Back then, more of it was the primordial hydrogen left over from the Big Bang, supplying galaxies for star formation. Currently, there are only 1 to 3 new stars formed in the Milky Way every year. Which is pretty slow by Milky Way standards.

Not even at the busiest time of star formation, our Sun formed 5 billion years ago. 5 billion years before that, just a short 4 billion after the Big Bang, star formation peaked out. There were 30 times more stars forming then, than we see today.

When stars were formed actually makes a difference. For example, the fact that it took so long for our Sun to form is a good thing. The heavier elements in the Solar System, really anything higher up the periodic table from hydrogen and helium, had to be formed inside other stars. Main sequence stars like our own Sun spew out heavier elements from their solar winds, while supernovae created the heaviest elements in a moment of catastrophic collapse. Astronomers are pretty sure we needed a few generations of stars to build up enough of the heavier elements that life depends on, and probably wouldn’t be here without it.

Even if life did form here on Earth billions of years ago, when the Universe was really cranking, it would wish it was never born. With 30 times as much star formation going on, there would be intense radiation blasting away from all these newly forming stars and their subsequent supernovae detonations. So be glad life formed when it did. Sometimes a little quiet is better.

So, how long has the Universe got? It appears that it’s not going to crash together in the future, it’s just going to keep on expanding, and expanding, forever and ever.

Our eyes would never see the Crab Nebula as this Hubble image shows it. Image credit: NASA, ESA, J. Hester and A. Loll (Arizona State University)
Our eyes would never see the Crab Nebula as this Hubble image shows it. Image credit: NASA, ESA, J. Hester and A. Loll (Arizona State University)

In a few billion years, star formation will be a fraction of what it is today. In a few trillion, only the longest lived, lowest mass red dwarfs will still be pushing out their feeble light. Then, one by one, galaxies will see their last star flicker and fade away into the darkness. Then there’ll only be dead stars and dead planets, cooling down to the background temperature of the Universe as their galaxies accelerate from one another into the expanding void.

Eventually everything will be black holes, or milling about waiting to be trapped in black holes. And these black holes themselves will take an incomprehensible mighty pile of years to evaporate away to nothing.

So yes, our Universe is dying. Just like in a cheery Sartre play, it started dying the moment it began its existence. According to astronomers, the Universe will never truly die. It’ll just reach a distant future when there’s so little usable energy, it’ll be mostly dead. Dead enough? Dead inside.

As Miracle Max knows, mostly dead is still slightly alive. Who knows what future civilizations will figure out in the googol years between then and now.

Too sad? Let’s wildly speculate on futuristic technologies advanced civilizations will use to outlast the heat death of the Universe or flat out cheat death and re-spark it into a whole new cycle of Universal renewal.

Could We Terraform a Black Hole?

Could We Terraform a Black Hole?

Is there any possible way to take a black hole and terraform it to be a place we could actually live?

In the challenge of terraforming the Sun, we all learned that outside of buying a Dyson Spaceshell 2000 made out of a solar system’s worth of planetbutter, it’s a terrible idea.

Making a star into a habitable world, means first destroying the stellar furnace. Which isn’t good for anyone, “Hey, free energy! vs. Let’s wreck this thing and build houses!”

Doubling down on this idea, a group of brilliant Guidensians wanted to crank the absurdity knob all the way up. You wanted to know if it would be possible to terraform a black hole.

In order to terraform something, we convert it from being Britney Spears’ level of toxic into something that humans can comfortably live on. We want reasonable temperatures, breathable atmosphere, low levels of radiation, and Earthish gravity.

With temperatures inversely proportional to their mass, a solar mass black hole is about 60 billionths of a Kelvin. This is just a smidge over absolute zero. Otherwise known as “pretty damn” cold. Actively feeding black holes can be surrounded by an accretion disk of material that’s more than 10 million degrees Kelvin, which would also kill you. Make a note, fix the temperature.

There’s no atmosphere, and it’s either the empty vacuum of space, or the superheated plasma surrounding an actively feeding black hole. Can you breathe plasma? If the answer is yes, this could work for you. If not, we’ll need to fix that.

You’d be hard pressed to find a more lethal radiation source in the entire Universe.

Black holes can spin at close to the speed of light, generating massive magnetic fields. These magnetic fields whip high energy particles around them, creating lethal doses of radiation. There are high energy particle jets pouring out of some supermassive black holes, moving at nearly the speed of light. You don’t want any part of that. We’ll add that to the list.

Black holes are known for being an excellent source of vitamin gravity. Out in orbit, it’s not so bad. Replace our Sun with a black hole of the same mass, and you wouldn’t be able to tell the difference.

So, problem solved? Not quite. If you tried to walk on the surface, you’d get shredded into a one-atom juicy stream of extruded tubemanity before you got anywhere near the time traveling alien library at the caramel center.

Reduce the gravity. Got it.

Artist rendering of a supermassive black hole. Credit: NASA / JPL-Caltech.
Artist rendering of a supermassive black hole. Credit: NASA / JPL-Caltech.

As we learned in a previous episode on how to kill black holes, there’s nothing you can do to affect them. You couldn’t smash comets into it to give it an atmosphere, it would just turn them into more black hole. You couldn’t fire a laser to extract material and reduce the mass, it would just turn your puny laser into more black hole.

Antimatter, explosives, stars, rocks, paper, scissors…black hole beats them all.

Repeat after me. “Om, nom, nom”.

All we can do is wait for it to evaporate over incomprehensible lengths of time. There are a few snags with this strategy, such as it will remain as a black hole until the last two particles evaporate away. There’s no point where it would magically become a regular planetoid.

That’s a full list of renovations for the cast and crew of “Pimp my Black Hole”.

Let’s look at our options. You can move it, just like we can move the Earth. Throw stuff really close to a black hole, and you get it moving with gravity. You could make it spin faster by dropping stuff into it, right up until it’s rotating at the edge of the speed of light, and you can make it more massive.

With that as our set of tools, there’s no way we’re ever going to live on a black hole.

It could be possible to surround a black hole with a Dyson Sphere, like a star.

Freemon Dyson theorized that eventually, a civilization would be able to build a megastructure around its star to capture all its energy. Credit: SentientDevelopments.com
Freemon Dyson theorized that eventually, a civilization would be able to build a megastructure around its star to capture all its energy. Credit: SentientDevelopments.com

It turns out there’s a way to have a pet black hole pay dividends aside from eating all your table scraps, shameful magazines and radioactive waste. By dropping matter into a black hole that’s spinning at close to the speed of light, you can actually extract energy from it.

Imagine you had an asteroid that was formed by two large rocks. As they get closer and closer to the black hole, tidal forces tear them apart. One chunk falls into the black hole, the smaller remaining rock has less collective mass, which allows it to escape. This remaining rock steals rotational energy from the black hole, which then slows down the rotation just a little bit.

This is the Penrose Process, named after the physicist who developed the idea. Astronomers calculated you can extract 20% of pure energy from matter that you drop in.

There’s isn’t much out there that would give you better return on your investment.

Also, it’s got to have a similar satisfying feeling as dropping pebbles off a bridge and watching them disappear from existence.

Terraforming a black hole is a terrible idea that will totally get us all killed. Don’t do it.

If you have to get close to that freakish hellscape I do recommend surrounding your pet with a Dyson Sphere and then feeding it matter and enjoying the energy you get in return.

A futuristic energy hungry civilization bent on evil couldn’t hope for a better place to live.

Have you got any more questions about black holes? Give us your suggestions in the comments below.

Why is it Tough to Land on a Comet?

Why is it Tough to Land on a Comet?

Why is landing on a comet so difficult and what does this tell us about future missions to comets and asteroids?

Us nerds were riveted by the coverage of the ESA’s Rosetta mission and its arrival at Comet 67/P in 2014. One such nerd is Paco Juarez, friend of the show and patron. He wanted to know why is it so darned hard to land on a comet?

In 2014, the tiny Philae Lander detached from the spacecraft and slowly descended down to the surface of the comet. If everything went well, it would have gracefully touched down and then sent back a pile of information about this filthy roving snowball.
As you know, the landing didn’t go according to plan. Instead of gently touching down on 67/P, Philae bounced off the surface of the comet like a tennis ball dropped from a tower, and rose a kilometer off the surface. Then more descending, and more bouncing, finally settling down on rugged terrain, surrounded by crevices and large boulders. At that point, engineers lost contact with the lander, and so much science went undone.

If I recorded this video a few months ago, that would have been the end of the story. You know how this goes, space exploration is hard and dangerous, don’t be surprised when your missions fail and space unfeelingly smashes up your pretty little robot probes with their little gold foil 27 pieces of flair.

Rosetta
Rosetta

Fortunately, I’m able to report that ESA regained contact with the Philae lander on June 13, 2015, resuming its mission, and scientific operations.

But why is landing on a comet so difficult and what does this tell us about future robotic and human missions to smaller comets and asteroids? When ESA engineers designed Philae, they knew it was going to be very difficult to land on a comet like 67/P because they have a such a low gravity. And they have low gravity because they’re little.

Illustration of the Rosetta Missions Philae lander on final approach to a comet surface. (Photo: ESA)
Illustration of the Rosetta Missions Philae lander on final approach to a comet surface. (Photo: ESA)

On Earth, 6 septillion tonnes of rock and metal give you an escape velocity of 11.2 km/s. That’s how fast you need to be able to jump in order to leave the planet entirely. But the escape velocity of 67/P is only 1 m/s. You could trip off the comet and never return. Whilst small children threw rocks at you from the surface as you drifted away.

Philae was built with harpoon drills in its landing struts. The moment the lander touched the surface of the comet, those harpoons were supposed to fire, securing the lander. The surface of the comet was softer than scientists had anticipated, and the harpoons didn’t fire. Or possibly they were broken and couldn’t fire. Space is hard. Whatever the case, without being able to grab onto the surface, it used the comet as a bouncy castle.

We’re learning what it takes to land on lower mass objects like comets and asteroids. NASA’s OSIRIS-REx mission will visit Comet Bennu, and send a lander down to the surface of the asteroid. From there it’ll pick up a few samples, and return them back to Earth. It’ll be Philae, all over again.

An artist concept of the Philae lander on comet 67P/Churyumov-Gerasimenko.  Credit: Astrium - E. Viktor/ESA
An artist concept of the Philae lander on comet 67P/Churyumov-Gerasimenko. Credit: Astrium – E. Viktor/ESA

In the future, we’re told, humans will be visiting asteroids to study them for science and their potential for ice and minerals. You can imagine it’ll be a harrowing descent, but even just walking around on the surface will be dangerous when every step could throw an astronaut into an escape trajectory. They’ll need to learn lessons from rock climbers and Rorschach.

As we learned with Philae, landings on low mass objects is really tough. We’re going to need to get more practice and develop new techniques and technologies before we’re ready to add asteroid mining to our list of “stuff we just do, NBD”.

What are some unusual worlds you’d like humanity to visit? Put your suggestions in the comments below.

Could We Make Artificial Gravity?

Could We Make Artificial Gravity?

It’s a staple of scifi, and a requirement if we’re going to travel long-term in space. Will we ever develop artificial gravity?

It’s safe to say we’ve spent a significant amount of our lives consuming science fiction.

Berks, videos, movies and games.

Science fiction is great for the imagination, it’s rich in iron and calcium, and takes us to places we could never visit. It also helps us understand and predict what might happen in the future: tablet computers, cloning, telecommunication satellites, Skype, magic slidey doors, and razors with 5 blades.

These are just some of the predictions science fiction has made which have come true.

Then there are a whole bunch of predictions that have yet to happen, but still might, Fun things like the climate change apocalypse, regular robot apocalypse, the giant robot apocalypse, the alien invasion apocalypse, the apocalypse apocalypse, comet apocalypse, and the great Brawndo famine of 2506.
Continue reading “Could We Make Artificial Gravity?”