Astronomers are Getting Really Good at Weighing Baby Supermassive Black Holes

Illustration of an active quasar. New research shows that SMBHs eat rapidly enough to trigger them. Credit: ESO/M. Kornmesser

In the 1970s, astronomers deduced that the persistent radio source coming from the center of our galaxy was actually a supermassive black hole (SMBH). This black hole, known today as Sagittarius A*, is over 4 million solar masses and is detectable by the radiation it emits in multiple wavelengths. Since then, astronomers have found that SMBHs reside at the center of most massive galaxies, some of which are far more massive than our own! Over time, astronomers observed relationships between the properties of galaxies and the mass of their SMBHs, suggesting that the two co-evolve.

Using the GRAVITY+ instrument at the Very Large Telescope Interferometer (VLTI), a team from the Max Planck Institute for Extraterrestrial Physics (MPE) recently measured the mass of an SMBH in SDSS J092034.17+065718.0. At a distance of about 11 billion light-years from our Solar System, this galaxy existed when the Universe was just two billion years old. To their surprise, they found that the SMBH weighs in at a modest 320 million solar masses, which is significantly under-massive compared to the mass of its host galaxy. These findings could revolutionize our understanding of the relationship between galaxies and the black holes residing at their centers.

Continue reading “Astronomers are Getting Really Good at Weighing Baby Supermassive Black Holes”

Those are Exoplanets. You’re Looking at Actual Exoplanets 63 Light-Years Away!

Credit: Axel Quetz / MPIA Graphics Department

Located 63.4 light-years from Earth in the constellation Pictor is the young and bright blue star, Beta Pictoris. In 2008, observations conducted from the ESO’s Paranal Observatory in Chile confirmed the presence of an extrasolar planet. This planet was Beta Pictoris b, a Super-Jupiter with an orbital period of up between 6890 and 8890 days (~19 to 24 years) that was confirmed by directly imaging it as it passed behind the star.

In August of 2019, a second planet was detected (another Super-Jupiter) orbiting closer to Beta Pictoris. However, due to its proximity to its parent star, it could only be studied through indirect means (radial velocity measurements). After conducting a reanalysis of data obtained by the VLT, astronomers with the GRAVITY collaboration were able to confirm the existence of Beta Pictoris c through direct imaging.

Continue reading “Those are Exoplanets. You’re Looking at Actual Exoplanets 63 Light-Years Away!”

Ground-Based Telescope Directly Observes the Atmosphere of an Extrasolar Planet, and Sees Swirling Clouds of Iron and Silicates

An artist's illustration of the exoplanet HR8799e. The ESO's GRAVITY instrument on its Very Large Telescope Interferometer made the first direct optical observation of this planet and its atmosphere. Image Credit: ESO/L. Calçada
An artist's illustration of the exoplanet HR8799e. The ESO's GRAVITY instrument on its Very Large Telescope Interferometer made the first direct optical observation of this planet and its atmosphere. Image Credit: ESO/L. Calçada

We’ve finally got our first optical look at an exoplanet and its atmosphere, and boy is it a strange place. The planet is called HR8799e, and its atmosphere is a complex one. HR8799e is in the grips of a global storm, dominated by swirling clouds of iron and silicates.

Continue reading “Ground-Based Telescope Directly Observes the Atmosphere of an Extrasolar Planet, and Sees Swirling Clouds of Iron and Silicates”