Earth’s Magnetic Field is Changing Surprisingly Quickly

If you’ve ever used a compass, you know that the magnetic needle always points North. Well, almost North. If you just happen to be out camping for the weekend, the difference doesn’t matter. For scientists studying the Earth’s interior, the difference is important. How Earth’s magnetic field changes over time give us clues about how our planet generates a magnetic field in the first place.

Continue reading “Earth’s Magnetic Field is Changing Surprisingly Quickly”

Does Zonal Swishing Play a Part in Earth’s Magnetic Field Reversals?

Why does the Earth’s magnetic field ‘flip’ every million years or so? Whatever the reason, or reasons, the way the liquid iron of the Earth’s outer core flows – its currents, its structure, its long-term cycles – is important, either as cause, effect, or a bit of both.

The main component of the Earth’s field – which defines the magnetic poles – is a dipole generated by the convection of molten nickel-iron in the outer core (the inner core is solid, so its role is secondary; remember that the Earth’s core is well above the Curie temperature, so the iron is not ferromagnetic).

But what about the fine structure? Does the outer core have the equivalent of the Earth’s atmosphere’s jet streams, for example? Recent research by a team of geophysicists in Japan sheds some light on these questions, and so hints at what causes magnetic pole flips.

About the image: This image shows how an imaginary particle suspended in the liquid iron outer core of the Earth tends to flow in zones even when conditions in the geodynamo are varied. The colors represent the vorticity or “amount of rotation” that this particle experiences, where red signifies positive (east-west) flow and blue signifies negative (west-east) flow. Left to right shows how the flow responds to increasing Rayleigh numbers, which is associated with flow driven by buoyancy. Top to bottom shows how flow responds to increasing angular velocities of the whole geodynamo system.

The jet stream winds that circle the globe and those in the atmospheres of the gas giants (Jupiter, Saturn, etc) are examples of zonal flows. “A common feature of these zonal flows is that they are spontaneously generated in turbulent systems. Because the Earth’s outer core is believed to be in a turbulent state, it is possible that there is zonal flow in the liquid iron of the outer core,” Akira Kageyama at Kobe University and colleagues say, in their recent Nature paper. The team found a secondary flow pattern when they modeled the geodynamo – which generates the Earth’s magnetic field – to build a more detailed picture of convection in the Earth’s outer core, a secondary flow pattern consisting of inner sheet-like radial plumes, surrounded by westward cylindrical zonal flow.

This work was carried out using the Earth Simulator supercomputer, based in Japan, which offered sufficient spatial resolution to determine these secondary effects. Kageyama and his team also confirmed, using a numerical model, that this dual-convection structure can co-exist with the dominant convection that generates the north and south poles; this is a critical consistency check on their models, “We numerically confirm that the dual-convection structure with such a zonal flow is stable under a strong, self-generated dipole magnetic field,” they write.

This kind of zonal flow in the outer core has not been seen in geodynamo models before, due largely to lack of sufficient resolution in earlier models. What role these zonal flows play in the reversal of the Earth’s magnetic field is one area of research that Kageyama and his team’s results that will now be able to be pursued.

Sources: Physics World, based on a paper in the 11 February, 2010 issue of Nature. Earth Simulator homepage

Geomagnetic Reversal

Magnetic Field


Geomagnetic reversal is when the orientation of the Earth’s magnetic field becomes reversed. Thus, magnetic north and south switch places. The process is a gradual one though that can take thousands of years. The possibility that the magnetic field could reverse was first brought up in the early 1900’s. However, at this time scientists did not understand the Earth’s magnetic field very well so they were not interested in the concept of geomagnetic reversal. It was not until the 1950’s that scientists began a more in-depth study of geomagnetic reversal.

Scientists have not reached a consensus on what causes pole reversal. Some believe that it is simply an effect of the nature of the planet’s magnetic field. They base this hypothesis on the magnetic field lines’ tendency to move around and think that it becomes agitated enough to flip. Other scientists propose that external influences cause the shift. For example, a tectonic plate that undergoes subduction and goes into the Earth’s mantle may disturb the magnetic field enough to make it turn off. When the field restarts, it randomly chooses orientation, so it could shift.

 In order to better understand the process, scientists study past geomagnetic reversals. This is possible because the reversals have been recorded in minerals found in sedimentary deposits or hardened magma. Scientists have discovered that the magnetic field has actually reversed thousands of times. Scientists also discovered a record of reversals on the ocean floor.

The time between geomagnetic eruptions is not constant. One time, five reversals occurred over a period of a million years. Sometimes however, none happen for a very long time. These periods are known as superchrons. The last time a geomagnetic reversal occurred was 780,000 years ago and is referred to as the Brunhes-Matumaya reversal.

Geomagnetic reversal has also been linked to 2012. Some people believe that in 2012 when the Mayan calendar runs out we will experience some cataclysmic event that will destroy our world or life as we know it. There are various theories for exactly what this event is. One theory says that geomagnetic reversal will occur during 2012. Since the magnetic field is weaker at first when it switches, some claim that the Earth will be ravaged by solar rays. Scientists still have not determined what effects a geomagnetic reversal will have on humans; however, humans did survive the last reversal 780,000 years ago. One hypothesis is that the solar winds actually create a magnetic field sufficient enough to protect us while Earth’s magnetic field restarts.

Universe Today has articles on no geomagnetic reversal in 2012 and field reversal may take 7000 years.

For more information, you should check out geomagnetic flip may not be random and magnetic storm.

Astronomy Cast has an episode on magnetism everywhere.

NASA: Earth’s Inconstant Magnetic Field