Astrophotos: Views of the Geminid Meteor Shower from Around the World

It’s nice to know that not everyone around the world was plagued by clouds, dense fog, driving rain and snowstorms like we had in Minnesota during this year’s Geminid Meteor Shower (and all that weather was within one 24-hour period!) In fact, some astrophotographers were able to capture some stunning views of the Geminids, like this absolutely gorgeous shot of a meteor over Mt. Fuji in Japan.

“I’ve captured Fuji with meteors many times in the past,” said photographer Yuga Kurita. “So I went ambitious this time. I tried to capture Fuji and a meteor reflected in Lake Saiko with a standard focal length lens. When I saw this meteor, I was absolutely stunned.”

See more Geminids from around the world, below:

Geminid meteors over Beijing, China. A stacked image of  more than 20 meteors, taken in just 140 minutes. Credit and copyright: Steed Yu.
Geminid meteors over Beijing, China. A stacked image of more than 20 meteors, taken in just 140 minutes. Credit and copyright: Steed Yu.
Geminid Meteor on 12-15-2014 .Captured cutting through the winter Milkyway in the constellation of Auriga, you can see the very colorful trail of the meteor in this image, the trail stretched more than 15 degrees of sky. Taken near Warrenton, Virginia. Credit and copyright: John Chumack.
Geminid Meteor on 12-15-2014 .Captured cutting through the winter Milkyway in the constellation of Auriga, you can see the very colorful trail of the meteor in this image, the trail stretched more than 15 degrees of sky. Taken near Warrenton, Virginia. Credit and copyright: John Chumack.
Four different Geminid meteors as seen from Oxfordshire, England with a Canon 1100D with standard lens.  The time of the meteor is marked on the photo. Credit and copyright: Mary Spicer.
Four different Geminid meteors as seen from Oxfordshire, England with a Canon 1100D with standard lens. The time of the meteor is marked on the photo. Credit and copyright: Mary Spicer.

Astrophotographer Mary Spicer shared these four meteor shots, and added, “Over about 90 minutes we saw a total of 61 meteors, 57 of which were Geminids and 6 were fireballs.”

In a 3.5 hour period on Dec. 13/14, 2014, the photographer  managed to capture 38 Geminid meteors. This composite contains just 11 of those meteors. Credit and copyright: Paul Andrew.
In a 3.5 hour period on Dec. 13/14, 2014, the photographer managed to capture 38 Geminid meteors. This composite contains just 11 of those meteors. Credit and copyright: Paul Andrew.

A timelapse movie taken by Michael Mauldin of the clouds and stars over Liberty Hill, Texas on Saturday, December 13, 2014. Two Geminid meteors are captured (each frame is frozen for a few seconds so you can see them):

Geminid meteors caught over Connaught Dome, at the Norman Lockyer Observatory in  Devon, England.  Credit and copyright: David Strange.
Geminid meteors caught over Connaught Dome, at the Norman Lockyer Observatory in Devon, England. Credit and copyright: David Strange.
Two Geminid meteors — one especially bright — streak through the sky on Sunday, December 14, 2014. This photo is a composite of two separate frames, taken a few minutes apart, to capture both meteors. Credit and copyright: David Murr.
Two Geminid meteors — one especially bright — streak through the sky on Sunday, December 14, 2014. This photo is a composite of two separate frames, taken a few minutes apart, to capture both meteors. Credit and copyright: David Murr.
A Geminid fireball captured on Dec. 13, 2014 near Cabo Rojo, Puerto Rico. Credit and copyright:  Frankie Lucena.
A Geminid fireball captured on Dec. 13, 2014 near Cabo Rojo, Puerto Rico. Credit and copyright: Frankie Lucena.
A faint green Geminid meteor joined in the sky scene with On display are : M44, Jupiter , the Moon, and Procyon in Canis Minor. Credit and copyright:  Carsten Pauer.
A faint green Geminid meteor joined in the sky scene with On display are : M44, Jupiter , the Moon, and Procyon in Canis Minor. Credit and copyright: Carsten Pauer.
A unique view of the 2014 Geminid Meteor Shower, taken on Dec. 14. 5 images stacked. Credit and copyright:  Jason Asplin.
A unique view of the 2014 Geminid Meteor Shower, taken on Dec. 14. 5 images stacked. Credit and copyright: Jason Asplin.
A Geminid Meteor  taken on Dec. 14, 2014 from a garden in the middle of Worthing, West Sussex England. Credit and copyright: BiteYourBum.com Photography.
A Geminid Meteor
taken on Dec. 14, 2014 from a garden in the middle of Worthing, West Sussex England. Credit and copyright: BiteYourBum.com Photography.
A bright Geminid meteor on Dec. 14, 2014. Credit and copyright:  Slave Stojanoski.
A bright Geminid meteor on Dec. 14, 2014. Credit and copyright: Slave Stojanoski.
Waiting for Geminids: a self portrait of the photographer waiting for the meteor shower to peak. Credit and copyright: Sergio Garcia Rill.
Waiting for Geminids: a self portrait of the photographer waiting for the meteor shower to peak. Credit and copyright: Sergio Garcia Rill.

While the above photo doesn’t have any meteors, it still garners a place in this post because astrophotographer Sergio Garcia Rill was waiting and hoping to capture some. Alas, writes Rill on Flickr, “While I had good enough luck to get some relatively clear skies for the Geminids meteor shower I think I wasn’t fortunate enough to catch any meteors on camera. I saw about a dozen meteors with my eyes, and a couple in the direction my cameras were pointing, but they probably weren’t strong enough to get captured with the settings I had.”

Astrophotos: Geminid Meteor Shower Images from Around the World

It’s always one of the most reliable of the annual meteor showers, however, this year the Geminids had to compete with a bright waxing gibbous Moon, which reached Full Moon status today, just 3 days after the shower’s peak over the weekend. But as always, our astrophotographer friends were out in force to try and capture a meteor or two with their cameras. Take a look at our great gallery of shots from around the world, and thanks to everyone who submitted their images to Universe Today’s Flickr page!

A Geminid meteor and Comet  C/2013 R1  Lovejoy, seen Dec. 11, 2013. Credit and copyright: Jeffrey Sullivan.
A Geminid meteor and Comet C/2013 R1 Lovejoy, seen Dec. 11, 2013. Credit and copyright: Jeffrey Sullivan.
A Geminid meteor pierces the sky over the San Pedro volcano in the Atacama desert in Chile. Credit and copyright: srta Andrea on Flickr.
A Geminid meteor pierces the sky over the San Pedro volcano in the Atacama desert in Chile. Credit and copyright: srta Andrea on Flickr.
A Geminid meteor on Dec. 14, 2013 over the Captain Cook Monument in North Yorkshire, UK. Credit and copyright: Peter Greig.
A Geminid meteor on Dec. 14, 2013 over the Captain Cook Monument in North Yorkshire, UK. Credit and copyright: Peter Greig.
A Geminid meteor races away from Jupiter on Dec. 14, 2013. Credit and copyright: James Lennie.
A Geminid meteor races away from Jupiter on Dec. 14, 2013. Credit and copyright: James Lennie.
A Geminid Meteor streaking by Betelgeuse in Orion, as seen from the UK on Dec. 14, 2013. Credit and copyright: Dave Walker.
A Geminid Meteor streaking by Betelgeuse in Orion, as seen from the UK on Dec. 14, 2013. Credit and copyright: Dave Walker.
A Geminid meteor on Dec. 13, 2013. Credit and copyright: Max Zoom on Flickr.
A Geminid meteor on Dec. 13, 2013. Credit and copyright: Max Zoom on Flickr.
An early Geminid crosses pathes with Comet 2013 R1 Lovejoy. (Credit: Jason Hullinger).
An early Geminid crosses paths with Comet 2013 R1 Lovejoy. (Credit: Jason Hullinger).

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

More Incredible Geminid Meteor Shower Images and Video

“This shot is a composite of about 700 frames from a time-lapse I took in Big Sur, CA. I found 61 frames with meteors in them. (Some frames had two or three meteors.) Then I stacked the frames and created masks for each meteor. This is my final shot!” Credit: Ken Brandon.

We have received so many great shots from the Geminid Meteor Shower, that we decided we needed to add another post (here’s our previous collection of Geminid Meteor Shower shots from around the world.) Enjoy the beauty and majesty of the night sky, captured in these amazing images. Click the images to see larger versions on our Flickr page, and thanks to everyone who submitted images and video.

“The Beacon: If you look closely you can see me looking up into the sky. Not a perfect shot but a lucky one. Credit to friend for firing the camera.” Credit: dwissman611 on Flickr.

Prolific astrophotographer John Chumack compiled this video of the Geminid Meteor Shower 2012, and in a minute and a half, shows over 400 meteors he captured on video!

Silent Witness, a Geminid Meteor from Black Balsam Knob near East Fork, North Carolina. Credit: Daniel Lowe/IStockTimelapse © danieldragonfilms.com

Geminid passing the Orion Constellation. Credit: fxmurphy on Flickr

Geminid meteor composite from 36 frames. Credit: Mark Ezell.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Incredible Sky Show: Geminid Meteor Shower Images from Around the World

Geminids at Gates Pass. Composite image from 30 frames of video. Credit: Sean Parker

The 2012 Geminid Meteor Shower has lived up to expectations, and here are some images and videos provided by people around the world.

“What an incredible show we had here!” said Sean Parker in Tucson, Arizona, USA. “I was able to see about 50 per hour.”

The images were shot at Gates Pass in Tucson, Arizona on the morning of 12-13-12. You can see M31 (Andromeda Galaxy 2.5 million light years away) at the left next to the Milky way.

More below, and you can click on most of these images to see larger versions in Flickr or Twitter.

Geminid Fireball. A large Geminid burns up in the atmosphere above the iconic Flatirons of Boulder, CO. Credit: Patrick Cullis

And another by Patrick:

Geminid Meteor Shower above the Flatirons, Boulder, CO. Credit: Patrick Cullis

Raining Down on Roseberry Topping (Geminid Meteor Shower 2012).Credit: Peter Greig.

Peter says: “This is the only meteor I caught whilst on a Geminid meteor hunting trip …at Captain Cooks Monument, Great Ayton, North Yorkshire, UK.”

Geminid Meteor Over Death Valley. Credit: Gavin Heffernan/SunChaser Pictures

Meteors in Malta. Credit: Leonard Ellul-Mercer

Leonard shares: “Last night the sky was totally overcast in Malta and this was very depressing as I was looking forward to this meteor shower. At around midnight I decided to retire, However, before doing so I went on the roof and noted some very small breaks in the cloud, but in a matter of 10 minutes I noted 6 bright meteors in these small gaps. So I presumed that there was a good meteor shower going on beyond those clouds. After about 30 mins. the cloud break increased and the show started off. It was a great meteor shower with bright meteors appearing every one or two minutes.”

Here’s a compilation of various views from a news station in Modesto, California. Some shots are obviously from a fish-eye camera:

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Geminid Meteor Shower Peaks Tonight

Winter Milky Way Geminids on December 12, 2012. Credit: John Chumack

The Geminid Meteor Shower is underway, with the peak on December 13th and 14th! SpaceWeather.com is reporting that international observers are counting as many as 50 meteors per hour as Earth plunges into a stream of debris from rock comet 3200 Phaethon. Astrophotographer John Chumack in Ohio, USA took the image of a bright fireball last night (Dec. 12/13) and said he was seeing one or two meteors every minute or so, describing the sky show as “definitely one of the best Geminid showers I’ve seen in over 20 years!”

John also compiled a video, below.

So if you’ve got clear skies, get out there and look up! The best time to look will be after dark on Thursday, December 13 and before dawn on Friday, December 14. The Geminids are notably one of the most reliable meteor showers, and this year the timing is great as the new Moon won’t intefer with the shower. Astronomers from McDonald Observatory at the University of Texas predicts skywatchers can expect to see dozens of meteors per hour.


Additionally, NASA says that for the first time, Earth might also pass through the tail of another object, comet Wirtanen, which could possibly provide even more meteors in the sky. No one is really sure what kind of meteor action this comet will produce, but Bill Cooke of NASA’s Meteoroid Environment off says even if the new shower is a dud, the Geminids should be great.

For the Geminids, meteors will appear to originate from the constellation Gemini, although they should be visible all over the sky. If Wirtanen does contribute to the shower, they may appear to come from the constellation Pisces.

If you’ve got cloudy skies or its too cold outside, there are a few alternatives:

NASA TV is going to have a live broadcast from 11:00 pm-3:00 am EST.

You can follow along via Twitter and MeteorWatch. All you need to do is check for the #meteorwatch hashtag, and people will be posting descriptions and images.

You can also “listen” to the meteor shower: The Air Force Space Surveillance Radar is scanning the skies above Texas. When a meteor or satellite passes over the facility–ping!–there is an echo. Check out SpaceWeatherRadio for the broadcast.

Weekly SkyWatcher’s Forecast – March 19-25, 2012

[/caption]

Greetings, fellow SkyWatchers! The week starts off with new Moon and the perfect opportunity to do a Messier Marathon. The planets continue to dazzle as we not only celebrate the Vernal Equinox, but the March Geminid meteor shower as well! If that doesn’t get your pulsar racing – nothing will. It’s time to get out your binoculars and telescopes and meet me in the backyard!

Monday, March 19 – Right now the Moon is between the Earth and the Sun, and you know what that means…New Moon! Tonight we’ll start in northern Puppis and collect three more Herschel studies as we begin at Alpha Monoceros and drop about four fingerwidths southeast to 19 Puppis.

NGC 2539 (Right Ascension: 8 : 10.7 – Declination: -12 : 50) averages around 6th magnitude and is a great catch for binoculars as an elongated hazy patch with 19 Puppis on the south side. Telescopes will begin resolution on its 65 compressed members, as well as split 19 Puppis – a wide triple. Shift about 5 degrees southwest and you find NGC 2479 (Right Ascension: 7 : 55.1 – Declination: -17 : 43) directly between two finderscope stars. At magnitude 9.6 it is telescopic only and will show as a smallish area of faint stars at low power. Head another degree or so southeast and you’ll encounter NGC 2509 (Right Ascension: 8 : 00.7 – Declination: -19 : 04) – a fairly large collection of around 40 stars that can be spotted in binoculars and small telescopes.

Tuesday, March 20 – Today is Vernal Equinox, one of the two times of the year that day and night become equal in length. From this point forward, the days will become longer – and our astronomy nights shorter! To the ancients, this was a time a renewal and planting – led by the goddess Eostre. As legend has it, she saved a bird whose wings were frozen from the winter’s cold, turning it into a hare which could also lay eggs. What a way to usher in the northern spring!

With the Moon still out of the picture, let’s finish our study of the Herschel objects in Puppis. Only three remain, and we’ll begin by dropping south-southeast of Rho and center the finder on a small collection of stars to locate NGC 2489 (Right Ascension: 7 : 56.2 – Declination: -30 : 04). At magnitude 7, this bright collection is worthy of binoculars, but only the small patch of stars in the center is the cluster. Under aperture and magnification you’ll find it to be a loose collection of around two dozen stars formed in interesting chains.

The next are a north-south oriented pair around 4 degrees due east of NGC 2489. You’ll find the northernmost – NGC 2571 (Right Ascension: 8 : 18.9 – Declination: -29 : 44) – at the northeast corner of a small finderscope or binocular triangle of faint stars. At magnitude 7, it will show as a fairly bright hazy spot with a few stars beginning to resolve with around 30 mixed magnitude members revealed to aperture. Less than a degree south is NGC 2567 (Right Ascension: 8 : 18.6 – Declination: -30 : 38). At around a half magnitude less in brightness, this rich open cluster has around 50 members to offer the larger telescope, which are arranged in loops and chains.

Congratulations on completing these challenging objects!

Are you up for another challenge? Then test your ability to judge magnitude as Mars has now dimmed to approximately -1.0. Does it look slightly different in size and brightness than it did a week or so ago? Keep watching!

Wednesday, March 21 – Take your telescopes or binoculars out tonight to look just north of Xi Puppis for a celebration of starlight known as M93 (Right Ascension: 7 : 44.6 – Declination: -23 : 52). Discovered in March of 1781 by Charles Messier, this bright open cluster is a rich concentration of various magnitudes that will simply explode in sprays of stellar fireworks in the eyepiece of a large telescope. Spanning 18 light-years of space and residing more than 3400 light-years away, it contains not only blue giants, but lovely golds as well. Jewels in the night…

Thursday, March 22 – Today in 1799 Friedrich Argelander was born. He was a compiler of star catalogues, studied variable stars and created the first international astronomical organization.

Tonight let’s celebrate no Moon and have a look at an object from an alternative catalog that was written by Lacaille, and which is about two fingerwidths south of Eta Canis Majoris.

Also known as Collinder 140, Lacaille’s 1751 catalog II.2 “nebulous star cluster” is a real beauty for binoculars and very low power in telescopes. More than 50% larger than the Full Moon, it contains around 30 stars and may be as far as 1000 light-years away. When re-cataloged by Collinder in 1931, its age was determined to be around 22 million years. While Lacaille noted it as nebulous, he was using a 15mm aperture reflector, and it is doubtful that he was able to fully resolve this splendid object. For telescope users, be sure to look for easy double Dunlop 47 in the same field.

Now, kick back and enjoy a spring evening with two meteor showers. In the northern hemisphere, look for the Camelopardalids. They have no definite peak, and a screaming fall rate of only one per hour. While that’s not much, at least they are the slowest meteors – entering our atmosphere at speeds of only 7 kilometers per second!

Far more interesting to both hemispheres will be the March Geminids which peak tonight. They were first discovered and recorded in 1973 and then confirmed in 1975. With a much faster fall rate of about 40 per hour, these slower than normal meteors will be fun to watch! When you see a bright streak, trace it back to its point of origin. Did you see a Camelopardalid, or a March Geminid?

Friday, March 23 – Today in 1840, the first photograph of the Moon was taken. The daguerreotype was exposed by American astronomer and medical doctor J. W. Draper. Draper’s fascination with chemical responses to light also led him to another first – a photo of the Orion Nebula.

Our target for tonight is an object that’s better suited for southern declinations – NGC 2451 (Right Ascension: 7 : 45.4 – Declination: -37 : 58). As both a Caldwell object (Collinder 161) and a southern skies binocular challenge, this colorful 2.8 magnitude cluster was probably discovered by Hodierna. Consisting of about 40 stars, its age is believed to be around 36 million years. It is very close to us at a distance of only 850 light-years. Take the time to closely study this object – for it is believed that due to the thinness of the galactic disk in this region, we are seeing two clusters superimposed on each other.

With the Moon out of the picture early, why not get caught up in a galaxy cluster study – Abell 426. Located just 2 degrees east of Algol in Perseus, this group of 233 galaxies spread over a region of several degrees of sky is easy enough to find – but difficult to observe. Spotting Abell galaxies in Perseus can be tough in smaller instruments, but those with large aperture scopes will find it worthy of time and attention.

At magnitude 11.6, NGC 1275 (Right Ascension: 3 : 19.8 – Declination: +41 : 31) is the brightest of the group and lies physically near the core of the cluster. Glimpsed in scopes as small as 150 mm aperture, NGC 1275 is a strong radio source and an active site of rapid star formation. Images of the galaxy show a strange blend of a perfect spiral being shattered by mottled turbulence. For this reason NGC 1275 is thought to be two galaxies in collision. Depending on seeing conditions and aperture, galaxy cluster Abell 426 may reveal anywhere from 10 to 24 small galaxies as faint as magnitude 15. The core of the cluster is more than 200 million light-years away, so it’s an achievement to spot even a few!

Saturday, March 24 – Today is the birthday of Walter Baade. Born in 1893, Baade was the first to resolve the Andromeda galaxy’s individual stars using the Hooker telescope during World War II blackout times, and he also developed the concept of stellar populations. He was the first to realize that there were two types of Cepheid variables, thereby refining the cosmic distance scale. He is also well known for discovering an area towards our galactic center which is relatively free of dust, now known as “Baade’s Window.”

Just after sunset, you really need to take a look out your western window for a really beautiful bit of scenery. As the sky darkens, look for the very tender crescent Moon lit with “Earthshine”. Above it you will see bright Jupiter. Above that you will see blazing Venus. And, if that’s not enough, just a little higher will bring you to the Pleiades! What a great way to start a weekend evening!

With the Moon so near the horizon, we have only a short time to view its features. Tonight let’s start with a central feature – Langrenus – and continue further south for crater Vendelinus. Spanning 92 by 100 miles and dropping 14,700 feet below the lunar surface, Vendelinus displays a partially dark floor with a west wall crest catching the brilliant light of an early sunrise. Notice also that its northeast wall is broken by a younger crater – Lame. Head’s up! It’s an Astronomical League challenge.

Once the Moon has set, revisit M46 in Puppis – along with its mysterious planetary nebula NGC 2438. Follow up with a visit to neighboring open cluster M47 – two degrees west-northwest. M47 may actually seem quite familiar to you already. Did you possibly encounter it when originally looking for M46? If so, then it’s also possible that you met up with 6.7 magnitude open cluster NGC 2423 (Right Ascension: 7 : 37.1 – Declination: -13 : 52), about a degree northeast of M47 and even dimmer 7.9 magnitude NGC 2414 (Right Ascension: 7 : 33.3 – Declination: -15 : 27 ) as well. That’s four open clusters and a planetary nebula all within four square arc-minutes of sky. That makes this a cluster of clusters!

Let’s return to study M47. Observers with binoculars or using a finderscope will notice how much brighter, and fewer, the stars of M47 are when compared to M46. This 12 light-year diameter compact cluster is only 1600 light-years away. Even as close as it is, not more than 50 member stars have been identified. M47 has about one tenth the stellar population of larger, denser, and three times more distant, M46.

Of historical interest, M47 was “discovered” three times: first by Giovanni Batista Hodierna in the mid-17th century, then by Charles Messier some 17 years later, and finally by William Herschel 14 years after that. How is it possible that such a bright and well-placed cluster needed “re-discovery?” Hodierna’s book of observations didn’t surface until 1984, and Messier gave the cluster’s declination the wrong sign, making its identification an enigma to later observers – because no such cluster could be found where Messier said it was!

Sunday, March 25 – Today in 1655, Titan – Saturn’s largest satellite – was discovered by Christian Huygens. He also discovered Saturn’s ring system during this same year. 350 years later, the probe named for Huygens stunned the world as it reached Titan and sent back information on this distant world. How about if we visit Saturn? You’ll find the creamy yellow planet located about a fistwidth northwest of bright, white Spica! Even a small telescope will reveal Titan, but remember… it orbits well outside the ring plane, so don’t mistake it for a background star! While you’re there, look closely around the ring edges for the smaller moons. A 4.5” telescope can easily show you three of them. How about the shadow the rings on the planet’s surface? Or how about the shadow of the planet on the rings? Is the Cassini division visible? If you have a larger telescope, look for other ring divisions as well. All are part and parcel of viewing incredible Saturn!

If you missed yesterday evening’s scenic line-up, don’t despair. Just after the Sun sets tonight – and above the western horizon – you’ll find the young Moon very closely paired with Jupiter. Keep traveling eastward (up) and you’ll encounter Venus. Continue east and the next stop is M45. Watch in the days ahead as the Moon sweeps by, continuing to provide us with a show! Need more? Then check out Leo and Mars! You’ll find a great triangulation of Regulus to the west, Mars to the east and Algieba to the north. If you didn’t know better, you’d almost swear the Lion swallowed the red planet.

Tonight let’s return to our previous studies of the Moon and revisit a challenging crater. Further south than Vendelinus, look for another large, mountain-walled plain named Furnerius, located not too far from the terminator. Although it has no central peak, its walls have been broken numerous times by many smaller impacts. Look at a rather large one just north of central on the crater floor. If skies are stable, power up and search for a rima extending from the northern edge. Keep in mind as you observe that our own Earth has been pummeled just as badly as its satellite.

On this day in 1951, 21 cm wavelength radiation from atomic hydrogen in the Milky Way was first detected. 1420 MHz H I studies continue to form the basis of a major part of modern radio astronomy. If you would like to have a look at a source of radio waves known as a pulsar, then aim your binoculars slightly more than a fistwidth east of bright Procyon. The first two bright stars you encounter will belong to the constellation of Hydrus and you will find pulsar CP0 834 just above the northernmost – Delta.

Unitl next week? May all your journeys be at light speed!

Geminid Meteor Shower Reminder and There’s An App For That!

[/caption]

Have you been watching the Geminid Meteor Shower? With just hours to go before the peak, activity has been high – despite this year’s Moon! If you’d like to know more on the history of this meteor shower, then check out this great article by Adrian West. If you plan on watching and would like to do something cool and unusual, then step inside…

As you can see from this below video sent to us by John Chumack, even the bright moonlight isn’t interfering too badly with this year’s awesome Geminid meteor shower display. While it will make the fainter ones more difficult to observe, the “fireball” attitude of this meteor shower just won’t quit!

As a reminder, be sure to be out tonight and through tomorrow morning for the peak of the show. You’ll want to try when the skies are the darkest, begin before moonrise – but don’t forget the display is usually the greatest around 2:00 a.m. local time when the sky window is pointed in the optimum direction. Just look along the ecliptic plane and follow the constellation of Gemini as it cruises roughly east to west across the sky as the night goes on! If you get clouded out? Try again the next night… and the next. The stream for the Geminids is very broad and lasts for some time.

Now… if you really want to have some fun and have an iPhone, here’s a real treat…

Thanks to NASA, there’s a new application which will help you to track, count and record information about this meteor shower and any meteor shower in the world – including sporadic ones! The “Meteor Counter” app will allow you to record your observations with an easy-to-use “piano key” interface. As you strike the keys, the app records information for each meteor, including the brightness and time. Once your observing session ends, your information and data is automatically uploaded to NASA researchers for analysis.

Created by Dr. Bill Cooke, head of NASA’s Meteoroid Environment Office at NASA’s Marshall Space Flight Center and the one-and-only Dr. Tony Phillips of SpaceWeather.com, this new iPhone application is going to change the way you observe and help science, too. “We developed the iPhone app to be fun, and informative, but also to encourage going outside to observe the sky,” said Cooke. “Our hope is the app will be useful for amateur and professional astronomers — we want to include their observations in NASA’s discoveries — and have them share in the excitement of building a knowledge base about meteor showers.”

The app is more than just a set of keys, though… It has an optional recorded audio track and users can even add their own comments as they observe. This will all be sent to NASA along with the numbers – vital information which will help researchers identify meteors associated with specific radiants and one-time events. The “Meteor Counter” was designed with everyone in mind – from the beginner to the expert – and even those who have never seen a meteor before. “The beauty is that it gradually transforms novices into experts,“ says Cooke. “As an observer gains experience , we weigh their data accordingly in our analyses.”

The Meteor Counter app is also much more. It provides a newsfeed and event calendar that’s kept up-to-the-moment by professional NASA and meteor scientists, and it will help keep you informed of upcoming meteor showers and the most current sightings. The app is currently available for iPhone, iPad and iPod Touch. Download the free app at : http://itunes.apple.com/us/app/meteor-counter/id466896415. A version for other mobile devices will be available in the near future. Complete instructions for using the Meteor Counter app is available at: http://meteorcounter.com/ and more information about NASA’s Meteoroid Environment Office can be found at: http://www.nasa.gov/offices/meo/home/index.html.

Wishing you clear skies!

Original Story Source: NASA Marshall Space Flight Center News Release. Geminid photography courtesy of John Chumack.

Coming Attraction: Geminid Meteor Shower 2011

[/caption]
It’s the finale of this year’s meteor showers: The Geminids will start appearing on Dec. 7 and should reach peak activity around the 13th and 14th. This shower could put on a display of up to 100+ meteors (shooting stars) per hour under good viewing conditions.

However, conditions this year are not ideal with the presence of a waning gibbous Moon (which will be up from mid-evening until morning). But seeing meteors every few minutes is quite possible. Geminid meteors are often slow and bright with persistent coloured trails which can linger for a while after the meteor has burned up.

There is something unusual about the Geminid meteor shower, as normally meteor showers are caused by the Earth ploughing through the debris streams created by comets and their tails. But the object that created the specific stream of debris associated with the Geminids is not a dusty icy comet, but a rocky asteroid called Phaethon 3200.

Phaethon 3200 belongs to a group of asteroids whose orbit cross the Earth’s. It turns out to be an unusual member of that group: Not only does it pass closer to the Sun than the others but it also has a different colour, suggesting a different composition to most asteroids.

Credit: Adrian West

One of the curious things about the Geminid particles is that they are more solid than meteoroids known to come from comets. This is good for meteor watchers; giving us brighter meteors.

Observations by astronomers over decades have shown that meteor rates have increased as we reach denser parts of the stream.

It is not known exactly when the asteroid was deflected into its current orbit, but if it was originally a comet it would have taken a long time for all the ices to have been lost. However, it is possible that it may have been a stony asteroid with pockets of ice.

We are unsure of the origins and appearance of Phaethon 3200, but its orbit has left us with a unique legacy every December, with little steaks of light known as the Geminid meteor shower.

You will only need your eyes to watch the meteor shower, you do not need telescopes binoculars etc, but you will need to be patient and comfortable. See this handy guide on how to observe meteors

During a meteor shower, meteors originate from a point in the sky called the radiant and this gives rise to the showers name e.g. The Geminids radiant is in Gemini, Perseids radiant is in Perseus etc.

Don’t be mislead by thinking you have to look in a particular part of or direction of the sky, as meteors will appear anywhere and will do so at random. You will notice that if you trace back their path or trajectory it will bring you to the meteor showers radiant. The exception to this rule is when you see a sporadic or rogue meteor.

Tell your friends, tell your familly and tell everyone to look up and join in with the Geminid meteorwatch on the 12th to the 14th December 2011. Use the #meteorwatch hashtag on twitter and visit meteorwatch.org for tips and guides on how to see and enjoy the Geminids and other meteor showers.

Credit: Wally Pacholka

Does a “Rock Comet” Generate the Geminids?

Meteor

[/caption]

Many annual meteor showers have parent bodies identified. For example, the Perseids are ejecta from the comet, Swift-Tuttle and the Leonids from Tempel-Tuttle. Most known parent bodies are active comets, but one exception is the Geminid meteor shower that peaks in mid December. The parent for this shower is 3200 Phaethon. Observations of this object have shown it to be largely inactive pegging it as either a dead comet or an asteroid. But on June 20, 2009, shortly after perihelion, 3200 Phaethon brightened by over two magnitudes indicating this object may not be as dead as previously considered. A new paper considers the causes of the brightening and concludes that it could be a new mechanism leading to what the authors deem a “rock comet”.

David Jewett and Jing Li of UCLA, the authors of this new paper, consider several potential causes. Due to the size of 3200 Phaethon, they suggest that a collision is unlikely. One clue to the reason for the sudden change in brightness was a close link of a half of a day to a brightening in the solar corona. Given a typical solar wind speed and the distance of 3200 Phaethon at the time, this would put the Geminid parent just at the right range to be feeling the effects of the increase. However, the authors conclude that this cannot be directly responsible by imparting sufficient energy on the surface of the object to cause it to fluoresce due to an insufficient solar wind flux at that distance.

Instead, Jewett and Li consider more indirect explanations. Due to the temperature at 3200 Phaethon’s perihelion (0.14 AU) the presence of ices and other volatile gasses frozen solid and then blasting away as often happens in comets was ruled out as they would have been depleted on earlier orbits. However, the blow from the increased solar wind may have been sufficient to blow off loosely bound dust particles. While this is plausible, the authors note that the amount of mass lost if this were the case would be a paltry 2.5 x 108 kg. While it’s possible that this may have been the cause of this single brightening, this amount of mass loss to the overall stream of particles responsible for the Geminid shower would be insufficient to sustain the stream and similar losses would have to occur ~10 times per orbit of the body. Since this has not been observed, it is unlikely that this event was tied to the production of the meteors. Additionally, it is somewhat unlikely that it could even be the event for this sole case since repeated perihelions would slowly deplete the reservoir of available dust until the body was left with only a bare surface. Unlike active comets which continually free dust to be ejected through sublimation of ice, 3200 Phaethon has no such process. Or does it?

The novel proposition is that this object may have an unusual mechanism by which to continually generate and liberate dust particles of the size of the Geminids. The authors propose that the heating at perihelion causes portions of the rock to decompose. This process is greatly enhanced if the rock has water molecules bonded to it and lab experiments have shown that this can lead to violent fracturing. Such processes, if present, could easily lead to the production of new dust particles that would be liberated during close approach to the sun. This would make this object a “rock comet” in which the properties of a comet’s dust ejection via gasses would be carried out by rocks.

To confirm this hypothesis, future observations would be needed to search for subsequent brightening at perihelion. Similarly, it should be expected that such a process may make a faint cometary tail with only a dust component that may be visible as well, although the lack of any such detection so far, despite studies looking for cometary tails, casts some doubt on this process.