Messier 25 – The IC 4725 Open Cluster

Messier 25, shown in proximity to the Sagittarius Constellation. Credit: Wikisky

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the Messier 25 open star cluster. Enjoy!

Back in the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of these objects so that other astronomers wouldn’t make the same mistake. Consisting of 100 objects, the Messier Catalog has come to be viewed as a major milestone in the study of Deep Space Objects.

One of these objects is Messier 25, an open star cluster located in the direction of the Sagittarius Constellation. At  a distance of about 2000 light years from Earth, it is one of the few Messier Objects that is visible to the naked eye (on a clear night when light conditions are favorable).

Description:

This galactic star cluster was originally discovered by Philippe Loys de Cheseaux in 1745 and included in Charles Messier’s catalog in 1764. Oddly enough, it was one of those curious objects that didn’t get cataloged by Sir John Herschel – therefore it never received a New General Catalog (NGC) number.

This is odd, considering that it was part of the 1777 catalog of Johann Elert Bode, observed by William Herschel in 1783, written about by Admiral Smyth in 1836 and even commented on by the Reverend Thomas William Webb in 1859! It was until J.L.E. Dreyer in 1908 that poor little M25 ended up getting added to the second Index Catalog.

Messier 25. Atlas Image mosaic obtained as part of the Two Micron All Sky Survey (2MASS), a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.
Atlas Image mosaic of Messier 25,obtained as part of the Two Micron All Sky Survey (2MASS). Credit: Univ. of Mass./IPAC/Caltech/NASA/NSF

Cruising along peacefully about 2,000 light-years away from Earth, this little group of stars spans across about 19 light years of space. Caught inside of its influence are four giant stars – two of spectral type M and two of type G. As we know, it contains the variable star U Sagittarii, a Delta Cephei-type, which lets us know this group of 86 or so stars may have began life together as long ago as 90 million years.

But how many stars are really in there? If you’re using a large aperture telescope, you’re probably detecting the signature of several just beyond the threshold limits. And so has more recent scientific studies. According to a study by A.L. Tadross (et al.) of the National Research Institute of Astronomy and Geophysics:

“The young open star cluster M25 (IC 4725) is located in the direction of the galactic center in a crowded region, near much irregular absorption features on Sagittarius arm. This cluster has some difficult observing problems due to its southern location. The mass data available in the literature have been gathered to re investigate this cluster using most photometric tools to determine its main photometric parameters. More than 220 stars with mean reddening of 0.50 mag and absorption of 1.62 mag are found within the cluster.”

Core region of the Messier 25 open star cluster. Credit: Sergio Eguivar
Core region of the Messier 25 open star cluster. Credit: Sergio Eguivar

And how many of those stars are surprises? Let’s try a few blue straggler stars. According to a study titled “Blue Stragglers, Be stars and X-ray binaries in open clusters“, by A. Marco (et al):

“Combination of high-precision photometry and spectroscopy allows the detailed study of the upper main sequence in open clusters. We are carrying out a comprehensive study of a number of clusters containing Be stars in order to evaluate the likelihood that a significant number of Be stars form through mass exchange in a binary. Our first results show that most young open clusters contain blue stragglers. In spite of the small number of clusters so far analyzed, some trends are beginning to emerge.In younger open clusters, such as NGC 869 and NGC 663, there are many blue stragglers, most of which are not Be stars. In older clusters, such as IC 4725, the fraction of Be stars among blue stragglers is very high. Two Be blue stragglers are moderately strong X-ray sources, one of them being a confirmed X-ray binaries. Such objects must have formed through binary evolution. We discuss the contribution of mass transfer in a close binary to the formation of both blue stragglers and Be stars.”

History of Observation:

Perhaps we know more about it today than our historic antecedents, but our knowledge of its existence is owed to astronomers like Charles Messier, who took the time to catalog it. As he wrote in his notes:

“In the same night, June 20 to 21, 1764, I have determined the position of another star cluster in the vicinity of the two preceding, between the head and the extremity of the bow of Sagittarius, and almost on the same parallel as the two others: the closest known star is that of the sixth magnitude, the twenty-first of Sagittarius, in the catalog of Flamsteed: this cluster is composed of small stars which one sees with difficulty with an ordinary refractor of 3 feet: it doesn’t contain any nebulosity, and its extension may be 10 minutes of arc. I have determined its position by comparing with the star Mu Sagittarii; its right ascension has been found at 274d 25′, and its declination at 19d 5′ south.”

Finder Chart for M25 (also shown M8->M9, M16->M18, M20->M24 and M28). Credit: freestarcharts
Finder Chart for M25 (also shown M8->M9, M16->M18, M20->M24 and M28). Credit: freestarcharts

Perhaps William Herschel understood there was more there to be seen, for he commented in his unpublished notes; “Very large, bright, stars and some small, faint ones; I counted 70, and there are many more within no considerable extent.”

Yet, it was Admiral Smyth who really understood what lay beyond. From his observations, he wrote:

“A loose cluster of large and small stars in the Galaxy, between the Archer’s head and Sobieski’s shield; of which a pair og 8th magnitudes, the principle of a set something in the form of a jew’s harp, are above registered. The gathering portion of the group assumes an arched form, and is thickly strewn in the south, on the upper part, where a pretty knot of minute glimmers occupies the center, with much star-dust around. It was discovered in 1764 by Messier, and estimated by him at 10′ in extent: it is 5 deg to the north-east of Mu Sagittarii, and nearly on the parallel of Beta Scorpii, which glimmers far away in the west.”

Locating Messier 25:

Finding Messier 25 with binoculars is quite easy. Simply start at the teapot “lid” star, Lambda, and aim about a fist width almost due north. Here you will encounter a a Cepheid variable – U Sagittarii. This one is a quick change artist, going from magnitude 6.3 to 7.1 in less than seven days, so although it is a cluster member, it may fade on you from time to time as a marker star!

The location of Messier 25. Credit: IAU/Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)
Location of Messier 25 and other Deep Sky Objects in proximity to the Sagittarius Constellation. Credit: IAU/Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

M25 will appear a a loose, but bright association of stars in binoculars and as a faint hazy spot in binoculars – but behold incredible resolution in a telescope. You’ll love the different magnitudes, so stick to around low to medium magnifications to enjoy it most.

As always, here are the quick facts. Enjoy!

Object Name: Messier 25
Alternative Designations: M25, IC 4725
Object Type: Open Galactic Star Cluster
Constellation: Sagittarius
Right Ascension: 18 : 31.6 (h:m)
Declination: -19 : 15 (deg:m)
Distance: 2.0 (kly)
Visual Brightness: 4.6 (mag)
Apparent Dimension: 32.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

A Four Cluster Pile-Up

Abell 2744, a.k.a. "Pandora's Cluster"

[/caption]

Abell 2744, shown above in a composite of images from the Hubble Space Telescope, the ESO’s Very Large Telescope and NASA’s Chandra X-ray  Observatory, is one of the most complex and dramatic collisions ever seen between galaxy clusters.

X-ray image of Abell 2744

Dubbed “Pandora’s Cluster”, this is a region 5.9 million light-years across located 3.5 billion light-years away. Many different kinds of structures are found here, shown in the image as different colors. Data from Chandra are colored red, showing gas with temperatures in the millions of degrees. Dark matter is shown in blue based on data from Hubble, the European Southern Observatory’s VLT array and Japan’s Subaru telescope. Finally the optical images showing the individual galaxies have been added.

Even though there are many bright galaxies visible in the image, most of the mass in Pandora’s Cluster comes from the vast areas of dark matter and extremely hot gas. Researchers made the normally invisible dark matter “visible” by identifying its gravitational effects on light from distant galaxies. By carefully measuring the distortions in the light a map of the dark matter’s mass could be created.

Galaxy clusters are the largest known gravitationally-bound structures in the Universe, and Abell 2744 is where at least four clusters have collided together. The vast collision seems to have separated the gas from the dark matter and the galaxies themselves, creating strange effects which have never been seen together before. By studying the history of events like this astronomers hope to learn more about how dark matter behaves and how the different structures that make up the Universe interact with each other.

Check out this HD video tour of Pandora’s Cluster from the team at Chandra:

Read more on the Chandra web site or in the NASA news release.

Image credit: X-ray: NASA/CXC/ITA/INAF/J.Merten et al, Lensing: NASA/STScI; NAOJ/Subaru; ESO/VLT, Optical: NASA/STScI/R.Dupke.

___________________

Jason Major is a graphic designer, photo enthusiast and space blogger. Visit his website Lights in the Dark and follow him on Twitter @JPMajor or on Facebook for the most up-to-date astronomy awesomeness!

 

Galaxy Cluster Far, Far Away Smashes Distance Record

JKC041 galaxy cluster. Credit: X-ray: NASA/CXC/INAF/S.Andreon et al Optical: DSS; ESO/VLT

[/caption]
A galaxy cluster located about 10.2 billion light years from Earth has been discovered by combining data from NASA’s Chandra X-ray Observatory with optical and infrared telescopes. The cluster, JKCS041, is the most distant galaxy cluster yet observed, and we see it as when the Universe was only about a quarter of its present age. The cluster’s distance beats the previous record holder by about a billion light years.

Galaxy clusters are the largest gravitationally bound objects in the Universe. Finding such a large structure at this very early epoch can reveal important information about how the Universe evolved at this crucial stage.

JKCS041 is at the brink of when scientists think galaxy clusters can exist in the early Universe based on how long it should take for them to assemble. Therefore, studying its characteristics – such as composition, mass, and temperature – will reveal more about how the Universe took shape.

“This object is close to the distance limit expected for a galaxy cluster,” said Stefano Andreon of the National Institute for Astrophysics (INAF) in Milan, Italy. “We don’t think gravity can work fast enough to make galaxy clusters much earlier.”

JKCS041 was originally detected in 2006 in a survey from the United Kingdom Infrared Telescope (UKIRT). The distance to the cluster was then determined from optical and infrared observations from UKIRT, the Canada-France-Hawaii telescope in Hawaii and NASA’s Spitzer Space Telescope. Infrared observations are important because the optical light from the galaxies at large distances is shifted into infrared wavelengths because of the expansion of the universe.

The Chandra data were the final – but crucial – piece of evidence as they showed that JKCS041 was, indeed, a genuine galaxy cluster. The extended X-ray emission seen by Chandra shows that hot gas has been detected between the galaxies, as expected for a true galaxy cluster rather than one that has been caught in the act of forming.

Also, without the X-ray observations, the possibility remained that this object could have been a blend of different groups of galaxies along the line of sight, or a filament, a long stream of galaxies and gas, viewed front on. The mass and temperature of the hot gas detected estimated from the Chandra observations rule out both of those alternatives.

The extent and shape of the X-ray emission, along with the lack of a central radio source argue against the possibility that the X-ray emission is caused by scattering of cosmic microwave background light by particles emitting radio waves.

It is not yet possible, with the detection of just one extremely distant galaxy cluster, to test cosmological models, but searches are underway to find other galaxy clusters at extreme distances.

“This discovery is exciting because it is like finding a Tyrannosaurus Rex fossil that is much older than any other known,” said co-author Ben Maughan, from the University of Bristol in the United Kingdom. “One fossil might just fit in with our understanding of dinosaurs, but if you found many more, you would have to start rethinking how dinosaurs evolved. The same is true for galaxy clusters and our understanding of cosmology.”

The previous record holder for a galaxy cluster was 9.2 billion light years away, XMMXCS J2215.9-1738, discovered by ESA’s XMM-Newton in 2006. This broke the previous distance record by only about 0.1 billion light years, while JKCS041 surpasses XMMXCS J2215.9 by about ten times that.

“What’s exciting about this discovery is the astrophysics that can be done with detailed follow-up studies,” said Andreon.

Among the questions scientists hope to address by further studying JKCS041 are: What is the build-up of elements (such as iron) like in such a young object? Are there signs that the cluster is still forming? Do the temperature and X-ray brightness of such a distant cluster relate to its mass in the same simple way as they do for nearby clusters?

Source: EurekAlert